
Parallel gridded simulation framework for DSSAT-CSM (version
4.7.5.21) using MPI and NetCDF
Phillip D. Alderman1

1Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, Oklahoma 74078, USA

Correspondence: Phillip D. Alderman (phillip.alderman@okstate.edu)

Abstract. The Decision Support System for Agrotechnology Transfer Cropping Systems Model (DSSAT-CSM) is a widely

used crop modeling system that has been integrated into large-scale modeling frameworks. Existing frameworks generate

spatially-explicit simulated outputs at grid points through an inefficient process of translation from binary, spatially-referenced

inputs to point-specific text input files followed by translation and aggregation back from point-specific, text output files to

binary, spatially-referenced outputs. The main objective of this paper was to document the design and implementation of5

a parallel gridded simulation framework for DSSAT-CSM. A secondary objective was to provide preliminary analysis of

execution time and scaling of the new parallel gridded framework. The parallel gridded framework includes improved code for

model-internal data transfer, gridded input/output with the Network Common Data Form (NetCDF) library, and parallelization

of simulations using the Message Passing Interface (MPI). Validation simulations with the DSSAT-CSM-CROPSIM-CERES-

Wheat model revealed subtle discrepancies in simulated yield due to the rounding of soil parameters in the input routines of10

the standard DSSAT-CSM. Utilizing NetCDF for direct input/output produced a 3.7- to 4-fold reduction in execution time

compared to text-based input/output. Parallelization improved execution time for both versions with between 12.2- (standard

version) and 13.4-fold (parallel gridded version) speedup when comparing 1 to 16 compute cores. Estimates of parallelization

of computation ranged between 99.2 (standard version) and 97.3 percent (parallel gridded version) indicating potential for

scaling to higher numbers of compute cores.15

1 Introduction

The Decision Support System for Agrotechnology Transfer Cropping Systems Model [DSSAT-CSM; Jones et al. (2003);

Hoogenboom et al. (2019)] is a widely used crop modeling system with cumulatively more than 14,000 users across over 150

countries worldwide since its inception (DSSAT Foundation, 2019) and over 7,500 downloads of the most recent version since

November 2017 (G. Hoogenboom, personal communication, November 11, 2019). Traditional applications of this system have20

involved field-scale simulations of agricultural experiments across varied agroclimatic conditions. However, it is increasingly

being integrated into large-scale modeling frameworks such as the International Model for Policy Analysis of Agricultural

Commodities and Trade [IMPACT; Robinson et al. (2015)] developed by the International Food Policy Research Institute

and the parallel system for integrating impact models and sectors [pSIMS; Elliott et al. (2014)]. The key interest in these

applications is in providing gridded inputs (i.e. input data across a grid of spatially-referenced points) to a model and receiving25

1

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

back from the model corresponding gridded outputs (i.e. spatially-explicit simulated outputs at the same grid points). At the

core of these frameworks is a process of translation from binary, spatially-referenced inputs to point-specific, DSSAT-format

text input files followed by translation and aggregation back from point-specific, DSSAT-format text output files to binary,

spatially-referenced outputs. File input/output operations are widely known to increase execution time and conversion from

floating point to text and back are inefficient from memory-use and computation perspectives. Thus, the conversion from5

spatial format to point-specific text inputs and from point-specific text outputs to spatial format presents a bottleneck for large-

scale simulations. Heretofore, this bottleneck has been overcome largely by use of high-performance computing (HPC) clusters

or cloud computing resources, while comparatively little effort has been invested in improving the efficiency of the IO process.

Designing flexible parallel gridded input-output libraries for DSSAT-CSM would improve the computational efficiency and

reduce execution time thereby allowing more efficient utilization of available computing resources.10

As noted by Kang et al. (2015) and Jang et al. (2019), examples of improving execution time for agricultural systems

models being applied at large scales using HPC are limited. Nevertheless, considerable increases in speed of execution have

been documented in some models by leveraging parallel execution and linking to gridded input-output libraries. For example,

Nichols et al. (2011) found a 40-fold speed-up of simulations by porting the Erosion Productivity Impact Calculator (EPIC)

model from Windows to Linux and parallelizing simulations (i.e. running multiple instances of a model simultaneously) on a15

HPC cluster. Subsequent improvements using the Message Passing Interface (MPI) have permitted up to 512-fold speed-up of

EPIC simulations (using 2048 parallel processes) with nearly linear scaling up to 128 parallel processes (Kang et al., 2015).

Zhao et al. (2013) reported an average of 20-fold speed up on multi-core Windows computers while running the Agricultural

Production Systems Simulator (APSIM) model using the HT Condor grid computing middleware. Much like the IMPACT

and pSIMS frameworks described above, all of these studies relied on text-based input and output. In contrast, Vital et al.20

(2013) avoided use of text input files by linking the PaSim grassland model with the Network Common Data Form (NetCDF)

library (Unidata, 2017) for reading and writing gridded data files. They reported up to 200-fold speed-up with nearly linear

scaling of parallelized pasture simulations using MPI with up to 200 parallel processes. It was hypothesized that implementing

a parallel gridded simulation framework for DSSAT-CSM (i.e. one that runs simulations in parallel and reads/writes directly

from/to gridded input/output files) would permit performance gains similar to those reported by Vital et al. (2013). Thus, the25

main objective of this paper was to document the design and implementation of a parallel gridded simulation framework for

DSSAT-CSM. A secondary objective was to provide preliminary analysis of execution time and scaling of the new parallel

gridded framework.

2 Interface Descriptions

Descriptions of the DSSAT-CSM and of the submodules contained therein have been published elsewhere (Jones et al.,30

2003) and the code for the current release version of the standard DSSAT-CSM is now open source and can be found at

https://github.com/DSSAT/dssat-csm-os/tree/master. Thus, the description here will focus on modifications that were made to

the standard version to facilitate efficient parallelization and gridded input and output. The specific version of source code doc-

2

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

umented in this manuscript can be found at DOI: 10.5281/zenodo.4893438. The current version of source code can be found

in the gridded branch of a fork from the official DSSAT-CSM repository (https://github.com/palderman/dssat-csm-os/tree/

gridded). These modifications can be grouped in terms of internal data transfer, gridded I/O and parallelization of simulations.

A description of the required NetCDF file structures is also provided in this section.

2.1 Internal data transfer5

The first category of code changes for DSSAT-CSM were made to support more efficient transfer of data between the internal

components of DSSAT-CSM. In the standard open source version (OS), the code from input subroutines reads data needed

for simulation from files (e.g. crop management details, cultivar parameters, and soil input data) and writes these data into

a consolidated input file (either DSSAT47.INP or DSSAT47.INH depending on the crop model being used for simulations).

The subsequent crop and soil modules then read the consolidated input file to access the required input data. The process is10

illustrated in the OS-labeled portion of Figure 1. This procedure is a hold-over from legacy code developed when the input

routine existed as a separate executable run prior to calling crop and soil models. The input routine was subsequently merged

with the main DSSAT-CSM executable code, but, as of version 4.7.5.21, the overall structure of the input subroutines remains

largely unchanged. Additionally, this legacy code makes use of COMMON blocks for sharing data between subroutines within

the input code. These COMMON blocks are now generally considered poor programming practice due to the ease with which15

data can be unintentionally corrupted if used improperly.

Consequently, a Fortran module (csm_io) implementing a flexible data structure and associated functions and subroutines

was developed to replace the consolidated input file and provide a structured way of transferring data between subroutines

that does not rely on the use of COMMON blocks. The parallel-gridded (PG) version documented herein utilizes this in-memory

data structure in place of the intermediate files used by the OS version (i.e. DSSAT47.INP or DSSAT47.INH), as illustrated20

in the PG-labeled portion of Figure 1. Code implementing the new csm_io module is in the csm_io.f90 source file at https:

//github.com/palderman/dssat-csm-os/tree/gridded/FlexibleIO. An example program that illustrates the use of the csm_io

module is given in Appendix A. This example program sets the value for three variables of types real, integer, and character.

The type-bound subroutine csminp%add_sec() is used to add a new section to the data structure, and the type-bound

subroutine csminp%add_var() is used to add entries for the three variables. The type-bound subroutine csminp%put()25

is used to store the current values for the three variables. Finally, the type-bound subroutine csminp%get() is used to retrieve

the stored values for each of the three variables. In addition to scalar values, the structure can also handle one-dimensional

arrays of real, integer and character types. In the PG version of DSSAT-CSM, the csm_io module was used to replace

subroutines OPTEMPXY2K() and OPTEMPY2K(), all use of COMMON blocks, and all code that relied on writing to or reading

from DSSAT47.INP or DSSAT47.INH. This resulted in modifications to the main CSM program as well as modifications to a30

number of subroutines, each of which is listed in Table 1.

3

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

OS PG

Input	Files

Input	Module Input	Module

DSSAT47.INP
or

DSSAT47.INH

Crop/Soil	Modules

csm_io	Module

Crop/Soil	Modules

Figure 1. Flowchart illustrating the data transfer processes implemented in the standard open-source (OS) and parallel-gridded (PG) versions

of the Decision Support System for Agrotechnology Transfer Cropping Systems Model. The folder shape indicates a step that involves

reading or writing a file. The cylinder shape indicates an in-memory data structure.

2.2 Griddded Input and Output

Gridded input and output for the PG version of DSSAT-CSM relies on an interface to Network Common Data Form (NetCDF),

a set of software libraries that define self-describing, portable data formats that support the creation, access, and sharing

of array-oriented scientific data (Unidata, 2017). The DSSAT-CSM NetCDF interface is defined in two Fortran modules:

nf90_file_module and dssat_netcdf. The nf90_file_module provides a derived type for NetCDF files that5

contains type-dependent low-level utility functions/subroutines for creating and manipulating NetCDF files including reading

and writing scalar and array variables of real, integer, and character types. The dssat_netcdf module provides extensions

to this basic derived type and associated type-dependent utility functions/subroutines that are specific to the various types of

input files required for DSSAT-CSM. Thus, the dssat_netcdf operates as a higher-level interface that DSSAT-CSM model

developers would interact with, while leaving the more mundane details of communicating with the NetCDF libraries to be10

handled by the nf90_file_module.

An example program using the dssat_netcdf module to read DSSAT-CSM FileX, soil, weather, and genotype-specific

parameter inputs from NetCDF files is given in Appendix B and is illustrated visually in Figure 2. This example program also

makes use of several other Fortran modules that implement a data structure (ordered_array) that stores its elements in

increasing order, various utility functions and subroutines related to reading command line arguments (dssat_cmd_arg), the15

4

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 1. Subroutines modified in the development of the parallel gridded version (PG) of the Decision Support System for Agrotechnology

Transfer Cropping Systems Model (DSSAT-CSM). Subroutines are listed according to category of code change: internal data transfer, gridded

input and output (Gridded I/O).

Code Change Category Modified Subroutines

Gridded I/O CANOPY(), CSCER(), ESR_SoilEvap(), INCOMP(), INPUT_SUB(),

IPDMND(), IPEXP(), IPFLD(), IPGROW(), IPPHENOL(), IPPLNT_

Inp(), IPPLNT(), IPROOT(), IPSLIN(), IPSOIL_Inp(), IpWRec(),

IPWTH(), LAND(), MULCHWATER(), MZ_GROSUB(), MZ_

PHENOL(), NFIX(), NUPTAK(), PGINP(), PHOTIP(), PODCOMP(),

PODDET(), PODS(), RootSoilVol(), SENES(), SMREADR2(),

VEGGR()

Internal data transfer CSCER(), ESR_SoilEvap(), ETINP(), Fert_Place(), FILL_

ISWITCH(), FOR_IPROOT(), FOR_PHOTIP(), FOR_PODS(),

INCOMP(), INPUT_SUB(), INVRCE(), INVRCS(), INVRLE(),

IPAHAR(), IPAPLT(), IPDMND(), IPEXP(), IPGROW(), IPIBS(),

IPPHENOL(), IPPLNT(), IPSIM(), IPSLIN(), IPSOIL_Inp(),

IPVAR(), IPWBAL(), IPWTH(), IRRIG(), LAND(),

MULCHWATER(), MZ_GROSUB(), MZ_OPHARV(), MZ_

PHENOL(), NFIX(), OM_Place(), OPHARV(), OPHEAD(),

OPSTRESS(), OPVIEW(), PEST(), PGINP(), PHOTIP(), PODS(),

RootSoilVol(), SenLig_Ceres(), SENS(), SG_CERES(), SG_

OPHARV(), SMREADR2(), SoilCNPinit_C(), SOILDYN(), SoilNi_

init(), SoilOrg_init(), SOMFRAC_INIT(), SOMINIT_C(), STEMP(),

TILEDRAIN(), TILLAGE(), WTHMOD()

NetCDF	FileX	example NetCDF	soil	example NetCDF	weather	example NetCDF	GSP	example

Set	file	name:
nc_filex%set_file_from_cmd_arg()

Open	FileX:
nc_filex%open()

Set	file	name:
nc_soil%set_file_from_cmd_arg()

Read	from	FileX:
nc_filex%read()

Create	*FIELDS	section	with	csm_io:
csminp%add_sec()

Add	coordinates	to	*FIELDS	section:
csminp%add_var()

Store	coordinates	values:
csminp%put()

Initialize	NetCDF	soil	file:
init_nc_soil()

Set	file	name:
nc_wth%set_file_from_cmd_arg()

Read	depth	to	base	of	layer:
nc_soil%read()

Open	NetCDF	weather	file:
nc_wth%open()

Set	file	name:
nc_gen%set_file_from_cmd_arg()

Set	latitude	and	longitude:
nc_wth%set_lat_lon()

Set	start	date	for	weather:
nc_wth%set_date()

Read	solar	radiation:
nc_wth%read()

Open	NetCDF	GSP	file:
nc_gen%open()

Set	cultivar	and	ecotype:
nc_gen%set_cul_eco()

Read	cultivar	parameter:
nc_gen%read_cul()

Read	ecotype	parameter:
nc_gen%read_eco()

Read	species	parameter:
nc_gen%read_spe()

Figure 2. Flowchart illustrating the sequence of operations for reading from NetCDF FileX, soil, weather and genotype-specific parameter

(GSP) files in the example program given in Appendix B and explained in Section 2.2.

5

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

csm_io module (discussed in section 2.1), and the dssat_mpi module (discussed in section 2.3). The program begins with

several operations related to reading the NetCDF version of the FileX. For readers less familiar with DSSAT-CSM terminology,

the FileX is a file type that contains information about various aspects of crop management as well as configuration options

for running simulations. The first operation in the program sets the file name for the NetCDF FileX by calling the type-

bound subroutine nc_filex%set_file_from_cmd_arg(). This subroutine bound to the nc_filex variable, which5

is of derived type nf90_file (defined in the nf90_file_module), searches for a command-line argument matching the

provided flag --nc_filex (e.g. --nc_filex=filex.nc) and reads the associated file path and name. Command-line

arguments accessed using the dssat_cmd_arg module need not be provided in any particular order, but should come after

the standard DSSAT command line arguments for the run type (e.g. B for batch mode, N for seasonal mode, Q for sequence

mode, etc.) and batch file (typically DSSBatch.V47) in order not to interfere with other components of DSSAT-CSM that10

expect these arguments to immediately follow the executable name. Once the file name is set, the NetCDF FileX is then

opened with the type-bound nc_filex%open(). The standard FileX format contains multiple “tables” of data stored within

sections of the file and connected via key values or “levels”. Each row of the TREATMENT table contains a unique combination

of key values that defines a given treatment. Further discussion of the NetCDF FileX file structure is provided in Section 2.4.

In the case of the example program, The value for the tenth row of the FL column is read into the variable field_level15

using the type-bound subroutine nc_filex%read(). This field_level is then used to read the corresponding values

of XCRD and YCRD from the FIELDS table into the variables longitude and latitude. The program then creates a new

section (*FIELDS), adds the XCRD and YCRD as real-type variables, and stores the longitude and latitude values in

the csminp data structure.

Next, the program reads the file name for the NetCDF soil data file from the command line using the type-bound subroutine20

nc_soil%set_file_from_cmd_arg() and calls the init_nc_soil() subroutine that is defined in the dssat_

netcdf module (Appendix B). This subroutine retrieves the previously stored values for XCRD and YCRD from the csminp

data structure, opens the NetCDF soil file, and sets the latitude and longitude coordinates within the nc_soil variable. These

latitude and longitude values are used to determine the proper coordinates from which to subsequently read soil variables from.

The program then reads the array of values for the depth to base of layer (SLB) variable starting from index 1 and stores it in25

the local 1-D array SLB using the type-bound subroutine nc_soil%read(). Other scalar and 1-D array variables can be

read using the same call. The NetCDF soil data file structure is discussed in greater detail in Section 2.4.

The example program proceeds by reading the NetCDF weather file by first setting the file name, opening the NetCDF

file and setting the spatial coordinates for the grid point (Appendix B). The start date for reading weather data is then set by

calling the type-bound subroutine nc_wth%set_date(), which sets the internal index based on the date specified. The date30

argument is specified as an integer where the first four digits are the year and the last three digits are the julian day of year. This

internal index is then used in subsequent calls to the type-bound subroutine nc_wth%read() by including the nc_wth%z_

i variable as the starting index value. This is illustrated in the example program by reading the solar radiation (SRAD) variable.

The NetCDF weather data file structure is addressed in Section 2.4.

6

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Following the weather file, an example of reading the NetCDF genotype parameter file is provided (Appendix B). Setting

the file name and opening the NetCDF file follows the same procedure as for the other file types. However, instead of setting

latitude and longitude coordinates (as is done for soil and weather files), the cultivar code is set by calling the type-bound

subroutine nc_gen%set_cul_eco(). Following this call, the cultivar parameter P1V is read from the file using the type-

bound subroutine nc_gen%read_cul(). Similarly, the ecotype parameter PARUE is read from the file using the type-bound5

subroutine nc_gen%read_eco() and the species parameter TRLFG is read using the type-bound subroutine nc_gen%

read_spe(). More specifics on the NetCDF genotype parameter file structure is provided in Section 2.4.

In addition to the development of the DSSAT-CSM NetCDF interface, existing code was modified to ensure compatibility

with the new DSSAT-CSM NetCDF interface. Subroutines modified to use the NetCDF interface are given in Table 1. In

general, the code changes involved adding an if construct that first checks command line flags to determine if the input type10

(e.g. soil data) is to be read from the DSSAT standard format or from the NetCDF gridded format. If the former, the original OS

code is executed while new code calling the NetCDF interface is executed if the latter condition is met. Some subroutines were

not conducive to simple modification by use of an if construct and therefore required implementation of a new version of the

subroutine compatible with the NetCDF interface. A list of these new subroutines and their original OS version counterparts

is given in Table 2. In general, for each pair of new and OS subroutines an if construct in each “parent” subroutine checks15

command line flags to determine which subroutine should be called (i.e. either the OS version or the new NetCDF-compatible

one).

2.3 Parallelization

Parallelization for the PG version of DSSAT-CSM relies on the Message Passing Interface (MPI), a widely used specification

that follows a message-passing parallel programming model especially suitable for distributed memory systems (Message20

Passing Interface Forum, 2015). The MPI specification was selected primarily due to its wide-spread usage and suitability

for distributed memory systems (e.g. HPC clusters). Specifically, MPI has been used successfully in other applications for

parallelizing crop models (Nichols et al., 2011; Kang et al., 2015; Jang et al., 2019; Vital et al., 2013). The message-passing

parallel programming model allows multiple independent DSSAT-CSM instances to run concurrently, each of which manages

its own memory and most of its input and output. This approach reduces the number of required modifications to the core25

DSSAT-CSM model code and thereby eases the burden in maintaining synchronization between the PG version and the model

code maintained by the DSSAT core developer team.

Overall, the DSSAT MPI interface consists of a Fortran module (dssat_mpi) and a control program (“parent” process)

that spawns multiple instances of the DSSAT-CSM (“child” processes), assigns a range of treatment numbers to each instance,

receives simulated results from each instance, and writes a NetCDF format output file. Several changes were made to the30

DSSAT-CSM main program to open an MPI connection with the parent process, store simulated output for subsequent trans-

fer, and transfer simulated output to the parent process. All communication between the parent process and each spawned

child process is mediated through two derived types defined in the dssat_mpi module, namely mpi_parent and mpi_

child. An example program illustrating the parent process is given in Appendix C and a corresponding example child pro-

7

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Parent	Process

Set	up	NetCDF	output	file DSSAT-CSM	Child	Processes

Set	coordinate	values

Insert	coordinate	values
into	ordered	array:
longitude%insert()
latitude%insert()

Set	coordinate	index	values:
longitude%find()
latitude%find()

Create	NetCDF	output	file:
nf90_output%create()

Add	coordinate	dimensions
to	NetCDF	output	file:

nf90_output%add_dim()

Add	coordinate	variables
to	NetCDF	output	file:
nf90_output%add_var()

Write	coordinate	values
to	NetCDF	output	file:

nf90_output%write_variable()

Receive	simulated	data:
mpi_parent%receive_registries()

Initialize	MPI	connection:
mpi_parent%init()

Set	control	variables

Spawn	DSSAT-CSM	child	processes:
mpi_parent%spawn_dssat_children()

Initialize	MPI	connection:
mpi_child%connect()

Close	MPI	connection:
mpi_parent%close()

Clean	up	DSSAT-CSM	child
running	directories:

system()

Write	simulated	data
to	NetCDF	output	file:

nf90_output%write_netcdf()

Close	NetCDF	output	file:
nf90_output%close()

Set	up	variable	regsitry:
seasonal_registry%csv_to_registry()

Store	memory	addresses
for	target	variables:

seasonal_registry%set_target()

Run	simulations	and	store	variables:
seasonal_registry%store()

Send	simulated	output:
mpi_child%send_registry()

Close	MPI	connection:
mpi_child%close()

Figure 3. Flowchart illustrating the points of communication and sequence of operations for the example parent and child programs given

in Appendices C and D and explained in Section 2.3. Solid gray borders indicate the boundary of a process. The dotted border indicates a

grouping of operations within a given process. Dashed arrows indicate communication between processes using Message Passing Interface

(MPI) protocols.

8

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Table 2. New subroutines created in the development of the parallel gridded version (PG) of the Decision Support System for Agrotechnology

Transfer Cropping Systems Model (DSSAT-CSM). New subroutines are listed with the corresponding subroutine from the standard open-

source version (OS) of DSSAT-CSM.

New Subroutine OS Version Subroutine

read_nc_chem_sec() IPCHEM()

read_nc_env_sec() IPENV()

read_nc_fert_sec() IPFERT()

read_nc_fld_sec() IPFLD()

read_nc_gen() IPVAR()

read_nc_har_sec() IPHAR()

read_nc_ic_sec() IPSLIN()

read_nc_irr_sec() IPIRR()

read_nc_plt_sec() IPPLNT()

read_nc_res_sec() IPRES()

read_nc_sim_sec() IPSIM()

read_nc_soil() IPSOIL_Inp()

read_nc_till_sec() IPTILL()

read_nc_wth() IpWRec()

cess program is given in Appendix D. A visual illustration of the parent and child processes and communication between

them is provided in Figure 3. The parent program begins by defining a comma-delimited list of variables and storing it in

the mpi_parent%varlist variable and defining an output file name. The program then calls the type-bound subroutine

mpi_parent%init(), which initiates an MPI connection by calling MPI_Init() as defined in the MPI specification.

Thereafter, the parent program sets several local variables that are used to spawn the DSSAT-CSM child processes. In the PG5

version of DSSAT-CSM, each of these variables, mpi_parent%varlist, and the output file name are supplied to the mas-

ter process program as command line arguments. The type-bound subroutine mpi_parent%spawn_dssat_children()

is then called, which constructs working directory names, command line arguments, and commands for each of the children

DSSAT-CSM processes and calls MPI_Comm_spawn_multiple(), the MPI specification for spawning multiple children

processes. The command line flag --MPI is included in the argument list for each of the children DSSAT-CSM processes,10

which signals to the executable to initiate an MPI connection and connect to the parent program. The mpi_parent%spawn_

dssat_children() subroutine also uses MPI_Send() (the MPI specification for performing a blocking send) to transfer

the treatments assigned to each DSSAT-CSM child process, the output variable list, the run mode, and the crop code for simu-

lation. These MPI data transfers are represented by a dashed arrow in Figure 3. After sending these data to each child process,

the subroutine allocates an array of data structures (one element per child process) in which to store the simulated output from15

9

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

each child process. Each data structure (referred to as a variable registry) is then initialized using the comma-separated variable

list contained in mpi_parent%varlist.

Appendix D provides an example child process that mimics the action of a DSSAT-CSM child process in the way in which

it interacts with the parent process. The program begins by connecting to the parent process by calling the type-bound subrou-

tine mpi_child%connect(), which calls MPI_Init(), MPI_Comm_rank() and MPI_Comm_get_parent() each5

once and MPI_Recv() multiple times to receive the elements of data sent from the parent process. The subroutine then uses

the system() intrinsic subroutine to run the mkdir shell command with the path for the specific working directory assigned

to that child process. The chdir() intrinsic subroutine is then called to move the child process into that working directory to

begin running simulations.

The reliance upon the mkdir shell command and the non-standard, GNU gfortran extension chdir() subroutine makes10

the code less portable, thus, a few words on the matter are warranted here. Assigning child processes to their own specific

working directories has been implemented to avoid competition between processes in simultaneously attempting to write to

identical output files. Although most direct writing of output to text files has been eliminated, occasional messages are still

generated by various components across the DSSAT-CSM and written to standard files (e.g. WARNING.OUT). With all child

processes running in the same directory, competition for these files can become problematic. The long-term intention is to15

eventually account for these sources of output and remove the need for invoking shell commands and non-standard subroutines.

Nevertheless, because most HPC clusters run some form of *nix operating system, the shell command strategy should not be

problematic in most use cases. Likewise, the GNU compiler collection is available in most HPC environments. Users also have

the option of customizing these two lines of code within the connect_to_parent() subroutine to fit their own compiler

and operating system constraints.20

Once the child process has connected with its parent, the child initializes a variable registry to contain seasonal simulated

output by calling the seasonal_registry%csv_to_registry() with the mpi_child%varlist argument (Ap-

pendix D). This initializes a variable registry with an entry for each of the variables listed in mpi_child%varlist. The

variable registry data structure is an instance of the derived type registry_type defined within the dssat_variable_

registry Fortran module. It is essentially an array of type registered_variable (also defined in the dssat_25

variable_registry module), along with subroutines for initializing the variable list, adding new variables to the array,

associating elements with specific variables, and storing variable values. The registered_variable type is a derived

type with a character variable component for the variable name, allocatable array components of real and integer types, point-

ers of real and integer types, as well as subroutines for initializing the variable, reallocating the variable, and storing values.

When each variable is initialized, the allocatable array component used for storing data is allocated. If the variable to be stored30

is of type real, then the real array is allocated. If the type is integer, then the integer array is allocated. To store values for a

given model variable, one of the pointers (real or integer depending on the type of the variable) must also be associated with the

address of the variable. In the example child program this is done by calling the seasonal_registry%set_target()

subroutine first for a real variable rvar and then for an integer variable ivar (Appendix D). In the PG version of DSSAT-

CSM, the seasonal_registry%set_target() subroutine is called in each subroutine where a variable of interest35

10

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

is defined. For example, within the CROPSIM-CERES-Wheat CSCER() subroutine there is a line that calls seasonal_

registry%set_target('CWAM',CWAD), which associates the memory address of the CWAD state variable for above-

ground biomass with the CWAM name within the variable registry. Once the addresses for all variables has been stored in the

variable registry, the seasonal_registry%store() subroutine can be called at each iteration and the then current value

at each of the associated memory addresses will be stored. An example of this is shown in Appendix D. Once all simula-5

tions are complete, the variable registry (seasonal_registry) is sent to the parent process through MPI by calling mpi_

child%send_registry() and the MPI connection is terminated by calling mpi_child%close(). These operations

are summarized in the right portion of Figure 3. The strategy of storing memory addresses and retrieving values from them at

the end of each seasonal iteration is predicated upon the fact that all state variables in the DSSAT-CSM are statically allocated

by using the SAVE statement at the beginning of variable declarations in all subroutines. Thus, the address of state variables10

is stable within a given run of the model. Moving away from static allocation of state variables would require an overhaul of

nearly every subroutine in DSSAT-CSM and, thus, is unlikely to occur in the foreseeable future.

While the children processes run simulations, the parent program creates the combined simulation output file (Appendix C).

It first defines dimensions for the NetCDF output file (nseasons, xcrd and ycrd) that, in the PG version of DSSAT-CSM,

are read from the NetCDF FileX. The name of the FileX is supplied as a command line argument. The xcrd and ycrd15

values are inserted into ordered arrays (a custom data structure similar to the C++ Standard Template Library ordered set and

defined in the module ordered_array) for longitude and latitude. The ordered arrays do not contain duplicate

values, and the values are arranged in order from lowest to highest. Because of this the dimension and order of values in the

longitude and latitude ordered arrays do not match xcrd and ycrd and new indices for each xcrd and ycrd (xcrd_

i and ycrd_i) must be set based on searching for the corresponding value for xcrd(i) in longitude and for ycrd(i)20

in latitude. Once this process is complete, the output NetCDF file is created by calling nf90_output%create()

and calling nf90_output%add_dim(), nf90_output%add_var() and nf90_output%write_variable() for

each coordinate variable (lat, lon, and season). These operations are summarized in the dashed box within the Parent Pro-

cess box in Figure 3. Once the output file is set up, the parent program calls the mpi_parent%receive_registries()

type-bound subroutine, which listens for transfer of simulated output from the DSSAT-CSM children processes in the form of25

a variable registry, as discussed above.

Once the DSSAT-CSM children processes complete all simulations and the parent program has received the simulated output,

the parent program closes the MPI connection and invokes the rm shell command using the system() intrinsic subroutine to

remove each of the directories previously created for the DSSAT-CSM children processes. The parent program then concludes

by calling the type-bound subroutine nf90_output%write_netcdf() to write the the values returned by the children30

DSSAT-CSM processes to a single NetCDF output file and then closing the file.

11

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

2.4 Input file conventions

The NetCDF interface described in Section 2.2 is unusable without properly formatted input files. Thus, this section will

document the file structures required for use with the DSSAT-CSM NetCDF interface. Header information from the example

FileX, soil, weather and genotype-specific parameter input NetCDF files is presented in Appendices E, F, G and H.

2.4.1 FileX5

As previously mentioned, the standard DSSAT FileX format contains multiple “tables” of data stored within sections of the file

and connected via key values. In the NetCDF version of the FileX the number of rows in each table is represented by the corre-

sponding dimension defined in the file. The tables defined in NetCDF FileX header given in Appendix E include SIMULATION

CONTROLS, FIELDS, CULTIVARS, TREATMENTS, PLANTING DETAILS, FERTILIZERS, and HARVEST DETAILS.

The header also contains dimensions that correspond to the length of character vectors stored in the file (e.g. len1, len2,10

len6, etc.). After the definition of dimensions in the file comes the full list of variables defined in the file. For each integer-

(int) and real-type (float) variable, the dimension variable corresponds to the FileX table to which the variable belongs. For

each character-type (char) variable the first dimension denotes the FileX table to which the variable belongs and the second

dimension defines the length of the character variable. For example, the SIMULATION\ CONTROLS dimension in Appendix

E has size 20 indicating that there are 20 rows in the SIMULATION CONTROLS table. Thus, for the variable SUMRY the first15

dimension is SIMULATION\ CONTROLS and the second dimension is len1 indicating that it is a length-one character vari-

able in the SIMULATION CONTROLS table (i.e. with 20 values). Similarly, the FIELDS dimension has size 7,208 indicating

that the FIELDS table contains 7,208 rows. Thus, the AREA variable (defined with the FIELDS dimension) is in the FIELDS

table and accordingly contains data for 7,208 grid points (“fields” in FileX parlance).

2.4.2 Soil inputs20

The NetCDF soil data file has a much simpler structure with three dimensions: latitude, longitude, and layer (Ap-

pendix F). The latitude and longitude dimensions represent the spatial dimensions of the soil data with the latitude

and longitude variables containing the coordinate values associated with each grid point. A third dimension (layer) is

defined for use with variables that contain layer-specific values (i.e. values that vary with soil depth) at each grid point. For

example, the SLB (depth to base of layer) variable is defined with the latitude, longitude, and layer dimensions25

because SLB contains layer-specific values. In contrast, the SALB (soil surface albedo) variable only contains a single value

per grid point and is, thus, defined with only the latitude and longitude dimensions. Further details about these and

other variables following the DSSAT standard nomenclature for soils data are described in the SOIL.CDE file (available at

https://github.com/palderman/dssat-csm-os/tree/gridded/Data/SOIL.CDE).

12

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

2.4.3 Weather inputs

The NetCDF weather data file also has a relatively simple structure with the latitude and longitude dimensions defined

in the same way as for the NetCDF soil data file (Appendix G). The NetCDF weather file also contains a third dimension

DATE which encodes the time dimension of the dataset. The coordinate values within this dimension are stored as integer

type and follow the internal encoding of the YEARDOY variable within the DSSAT-CSM, namely, that the left-most four digits5

encode the four-digit year and the remaining three digits to the right encode the Julian day of year. For example, the value

2020001 would encode January 1, 2020 and the value 2020366 would encode December 31, 2020. Just as for the soil data,

some weather variables have a single value per grid point (e.g. TAV, average annual temperature) and are defined with only

the latitude and longitude dimensions. Other variables have daily values at each grid point and are defined with the

latitude, longitude and DATE dimensions (e.g. RHUM, average daily relative humidity). Further details about these10

and other variables following the DSSAT standard nomenclature for weather data are described in the WEATHER.CDE file

(available at https://github.com/palderman/dssat-csm-os/tree/gridded/Data/WEATHER.CDE).

2.4.4 Genotype-specific parameters

Finally, the genotype-specific parameter (GSP) NetCDF file structure is slightly more complex than the NetCDF soil and

weather data files although less so than the FileX. At present, the GSP NetCDF file is the only NetCDF input file that does15

not contain any spatial coordinates (Appendix H). The dimensions of the file are set based on the number of cultivars and

ecotypes included in the file as well as the dimensions of species parameter arrays. For example, the cultivar parameter P1V

(vernalization requirement) is defined with dimension l12 (with length 12) because there are 12 cultivars in the file. Likewise,

the ecotype parameter P1 (duration of phase from end of juvenile to terminal spikelet) is defined with dimension l11 (with

length 11) because there are 11 ecotypes defined in the file. Finally, PGERM (germination phase duration) is a species parameter20

defined with dimension l1 (with length 1) because that parameter is a scalar value and LAFS (leaf area senesced; also a

species parameter) is defined with dimension l6 because it contains values for each of 6 growth stages. Cultivar and ecotypes

in standard DSSAT format are specified using a unique 6-digit character code for each cultivar and ecotype. In the NetCDF

GSP file these 6-digit character codes are prepended with either CUL (cultivar) or ECO (ecotype) to generate unique name

for a scalar integer that stores the index value for that particular cultivar or ecotype. For example, the cultivar code IB048825

is used for the Newton wheat cultivar and, thus, the CULIB0488 variable in the NetCDF GSP file stores the index for the

Newton cultivar. When reading values for the Newton cultivar, the NetCDF interface uses this index value to retrieve the

correct value for any cultivar parameters (e.g. the fifth value from the P1V array). Correspondingly, the ECOUSWH01 variable

in the NetCDF GSP file stores the index for the USWH01 ecotype. Because the ecotype associated with the Newton cultivar

is USWH01, the NetCDF interface first reads the index value from ECOUSWH01 and then uses it to retrieve the proper value30

for ecotype parameters (e.g. the fifth value from the P1 array). Further details and definitions of all cultivar, ecotype, and

species parameters can be found in the WHCER047.CUL, WHCER047.ECO and WHCER047.SPE files at https://github.com/

palderman/dssat-csm-os/tree/gridded/Data/Genotype/.

13

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

3 Methods for Interface Validation

3.1 Software versions

Simulations from three versions of the DSSAT-CSM were compared for validating the parallel gridded interface described in

section 2. The first version was the standard open source version 4.7.5.21 of DSSAT-CSM (abbreviated OS; https://github.

com/dssat/dssat-csm-os), which uses standard DSSAT-format text files for input and output. The second version was the par-5

allel gridded version 4.7.5.21 of DSSAT-CSM (abbreviated PG) which contains the changes documented in section 2. Ini-

tial comparison of simulated results from the PG and OS versions revealed discrepancies that will be discussed below (see

Section 4.1). In order to investigate these discrepancies, a third version (referred to as PG-MI) was implemented as an ex-

tension from the PG version in order to mimic the way in which the OS version rounds soil input data when writing the

DSSAT47.INP/DSSAT47.INH file (see Section 2.1). The code added for the PG-MI version can be found on lines 651 to 71210

at https://github.com/palderman/dssat-csm-os/tree/gridded/InputModule/IPSOIL_Inp.for. In the current PG source code, the

PG-MI version can be invoked by using the --mimic_inp command line flag when calling the DSSAT-CSM executable.

In order to compare performance of the text-based OS version to the PG version, a set of wrapper functions were written for

the OS version in the R statistical programming language utilizing the ncdf4 (Pierce, 2019), Rmpi (Yu, 2002), and DSSAT

(Alderman, 2020) R packages. The code for these wrapper functions is available at https://github.com/palderman/GridDSSAT.15

All code for this analysis was built with the GNU compiler collection (gcc) version 5.5.0. The MPI library used in this

study was OpenMPI (Gabriel et al., 2004) version 2.1.6. The NetCDF (Unidata, 2017) Fortran library used was version 4.5.3

linked against the NetCDF-C version 4.7.4, which itself was linked against the HDF5 library version 1.12.0 (The HDF Group,

1997-2020). The R statistical programming environment version 4.0.3 (R Core Team, 2020) was used for running simulations

and performing data analysis. The tidyverse R package (Wickham et al., 2019) was used for data manipulation, and the20

DiagrammeR (Iannone, 2020), ggplot2 (Wickham, 2016), raster (Hijmans, 2020) R packages were used to generate

figures. Curves for analyzing execution time were fit using function nls() from the stats R package (R Core Team, 2020).

3.2 Input data sources

The grid used for simulations in this study was a 0.05◦ grid matching that of the climate hazards infrared precipitation with

stations (CHIRPS) dataset (Funk et al., 2015) clipped to the boundaries of the state of Oklahoma, USA. The Oklahoma state25

boundary used for clipping was extracted from the TIGER/Line® database (United States Census Bureau, 2016).

3.2.1 Soil data

Gridded soil data were derived from the STATSGO2 soil database (Soil Survey Staff, 2017), the National Elevation Dataset

(NED; Gesch et al., 2018), and the 2017 Wheat Frequency Layer from the Cropland Data Layer dataset (CDL; National

Agricultural Statistics Service, 2017). The CDL data were used to construct a 30m-resolution mask layer of potential wheat-30

growing areas by using the gdal_translate command-line utility (GDAL/OGR contributors, 2020) to convert the Wheat

14

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Frequency Layer from 8-bit integer to 32-bit integer and the gdalwarp utility to reproject the data into the Albers Equal-Area

projection (the same projection as the STATSGO2 spatial data). The map unit key (MUKEY) for each grid point was extracted

from the STATSGO2 database using the gdal_rasterize utility and the gdal_translate utility was used to mark

water land cover (STATSGO2 MUKEY 657964) as missing data. The gdal_calc.py utility was then used to apply the

reprojected Wheat Frequency Layer as a mask to the rasterized map unit key data producing a wheat-specific raster layer of5

map unit keys. The wheat-specific map unit keys were then reprojected to the World Geodetic System 84 (WGS84) coordinate

system and spatially resampled to the 0.05◦ CHIRPS grid described above using gdalwarp. The spatial resampling was done

using the mode resampling method, whereby the map unit key assigned to a given grid box was determined based on the most

frequent map unit key within that grid box. The map unit key for each grid box was then used to extract the soil component and

associated layer specific data for each grid point from STATSGO2. Slope was calculated from the NED 1/3 second resolution10

using the terrain() function in the raster R package (Hijmans, 2020). The resulting slope data were then resampled

to the 0.05◦ CHIRPS grid using the aggregate() function in the raster R package (Hijmans, 2020). The point-specific

slope was combined with hydrologic soil group from STATSGO2 to determine the antecedent moisture condition II curve

number (SLRO) following Ritchie et al. (1990). As mentioned above, header information for the final NetCDF soil file can be

found in Appendix F.15

3.2.2 Weather data

The gridded weather data used for simulations were derived from data measured by the Oklahoma Mesonet (DOI: 10.15763/

dbs.mesonet). The Oklahoma Mesonet, commissioned in 1994, is an automated network of 120 remote, meteorological stations

across Oklahoma (Brock et al., 1995; McPherson et al., 2007). Mesonet data are collected and transmitted to a central facility

every 5 min where they are quality controlled, distributed, and archived (Shafer et al., 2000). Daily summaries of near-surface20

cumulative solar radiation (MJ m−2 d−1) and rainfall (mm d−1), average relative humidity (percent) and windspeed (km d−1),

and maximum and minimum temperature (◦C) were calculated from 5-min data for each station. The daily summaries were

merged with coordinates for each station as provided by the updatestn() function of the okmesonet R package (Allred

et al., 2014) and the spatially-referenced daily data were interpolated by inverse distance weighting (IDW) to the 0.05◦ CHIRPS

using the idw() function of the gstat R package (Pebesma, 2004; Gräler et al., 2016). Interpolation for a given grid point25

was performed using the nearest 5 Mesonet stations with an IDW power of 2. As mentioned above, header information for the

final NetCDF soil file can be found in Appendix G.

3.2.3 Genotype-specific parameters

Genotype-specific parameter values for the DSSAT-CSM-CROPSIM-CERES-Wheat model were extracted from the standard

cultivar (WHCER047.CUL), ecotype (WHCER047.ECO), and species (WHCER047.SPE) DSSAT format parameter files (re-30

lease version 4.7.5) and combined into a single NetCDF file using the ncdf4 R package (Pierce, 2019). Header information

for the GSP file is provided in Appendix H.

15

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

3.3 Validation and benchmark simulations

A set of validation simulations were run for the entire CHIRPS grid for Oklahoma (7,208 grid points) for the three versions of

DSSAT-CSM (OS, PG, and PG-MI). The purpose of the validation simulations was to ensure that simulated output from the

PG version matched that of the standard OS version. Execution time and parallel scalability for different versions was assessed

using benchmark simulations, which consisted of running the OS and PG versions for the same subset of 512 grid points. Runs5

were completed with varying numbers of compute cores (1, 2, 4, 8, and 16 cores) each repeated four times. Curves were fitted

to execution time as a function of number of compute cores according to the following equation:

Tt =
Tp

Nc
+ Ts (1)

where Tt is the total measured execution time, Tp is the estimated time spent in parallelized code, Nc is the specified number

of compute cores, and Ts is the estimated time spent in serial code.10

All simulations in this study used the DSSAT-CSM-CROPSIM-CERES-Wheat model with the standard parameter values for

the wheat cultivar Newton. Planting date was set to October 15 of each year with a planting density of 173 plants m−2 and a

row spacing of 19 cm. Each seasonal simulation was initialized at three months prior to planting. Crop growth was simulated as

rainfed, water-limited production with nitrogen stress disabled. Automatic harvest was set to trigger at simulated crop maturity.

All simulations were run in DSSAT-CSM “seasonal” run mode (i.e. state variables were reinitialized for each season) for 2015

seasons from 1997 to 2018. Simulations were run at the Oklahoma State University High-Performance Computing Center

(OSU-HPCC) on the Pete supercomputer. Each repetition of each compute core number was run independently on its own

compute node, each of which had dual Intel “Skylake” 6130 CPUs (total 32 cores per node) and 96 GB RAM.

4 Results and Discussion

4.1 Interface validation20

The top panel of Figure 4 shows the difference in simulated winter wheat yield between the OS and PG versions of DSSAT-

CSM for one simulated year. Although the majority of grid points had values at or near zero, deviations ranging from approx-

imately -150 to 150 kg ha−1 were readily evident in the simulated output. The grid points at which these deviations occurred

varied depending on the season of simulation, but the magnitude of deviations was on the same order of magnitude. In in-

vestigating possible sources of this discrepancy, the PG-MI version of DSSAT-CSM was implemented and run for the same25

simulation set. The lower panel of Figure 4 shows the difference between simulated yield between the OS and PG-MI versions.

The fact that all PG-MI simulated yields were within 0.5 kg ha−1 of the OS simulated yields indicates that the rounding of soil

data was the primary cause of the differences in yield observed in the top panel. The DSSAT-CSM has several options for how

soil profile data are handled for simulation. When the FileX variable MESOL is set to 1 (as was the case in this study), fixed

depths for soil layers are used. If the depths for soil layers in the soil input file do not match these soil layers, the data from30

the input file are interpolated to the fixed depths via a weighted average. In the case of the OS version, these values are then

16

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

O
S

 v
s.

 P
G

O
S

 v
s.

 P
G

−
M

I

−150

−100

−50

0

50

100

Yield Difference

Figure 4. Difference in simulated winter wheat yield (kg ha−1) for the 2008-2009 growing season in Oklahoma, USA when comparing

the standard open source version of DSSAT-CSM (OS) (top panel) to the parallel gridded version (PG) documented in this article or (lower

panel) to the PG version with additional code to mimic the rounding of soil input data as occurs in the OS version (PG-MI). Positive values

indicate that OS simulated higher yield than PG or PG-MI, while negative values indicate that OS simulated lower values than PG or PG-MI.

rounded when the variables are written into the intermediate DSSAT47.INP file. For the PG version, the calculated values are

kept in the original floating point precision because they are stored in memory rather than being written to an intermediate file.

This subtle difference in values for soil variables does not generally result in large effects on the simulated output. However,

in some seasons at some grid points when limited rainfall occurred, the differences in soil variables were large enough to

cause detectable differences in simulated yield. Once modifications are made to DSSAT-CSM that avoid writing soil inputs5

to intermediate text files (such as those documented in Section 2.1), these differences will be resolved. However, at present

simulations run with the PG version in some study areas may differ from the OS version depending on input data and which

MESOL option is selected.

4.2 Benchmark Simulations

Figure 5 shows the execution time for running the 512-grid-point benchmark simulations with the NetCDF-based PG version10

of DSSAT-CSM compared to that of the text-based OS version for varying numbers of compute cores. On average, the text-

based OS version required approximately 24 minutes on one compute core, while the NetCDF-based PG version required

approximately 6 minutes. This amounted to a 4-fold speedup by switching to the NetCDF-based version from the text-based

version, an advantage that persisted with a 3.7-fold speedup when increasing to using 16 compute cores. The slight difference in

speedup indicated that the text-based version benefited slightly more from parallelization than did the NetCDF-based version.15

17

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

0

10

20

30

5 10 15 20
Number of Compute Cores

S
im

ul
at

io
n

T
im

e

Input Type

NetCDF

Text

Figure 5. Simulation time (minutes) for 512 grid points simulated with the Decision Support System for Agrotechnology Transfer Cropping

System Model (DSSAT-CSM) using text-file-based (Text) and Network Common Data Form (NetCDF) file formats for varying numbers of

compute cores.

This phenomenon was also evident when comparing 1 to 16 cores within each version with 12.2 times faster execution time

for the NetCDF-based version compared to 13.4 times faster execution time for the text-based version. The fitted curve for the

text-based version estimated parallel execution time (Tp) at 23.4 minutes while serial execution time (Ts) was estimated at 11.1

seconds indicating that approximately 99.2 percent of computation was parallelized. Similarly, the Tp estimate for the NetCDF

version was 5.7 minutes and the Ts estimate was 0.2 seconds indicating that 97.3 percent of computation was parallelized.5

Although a thorough evaluation of parallel efficiency is beyond the scope of this study, these numbers suggest a relatively high

potential for further scaling to higher numbers of compute cores.

5 Summary and Conclusions

This article documented the design and implementation of a parallel simulation framework with gridded input and output for

the DSSAT-CSM using MPI and NetCDF libraries. This framework was demonstrated with simulations of wheat yield across10

Oklahoma, USA using the CROPSIM-CERES-Wheat model. Validation simulations revealed subtle variations in simulated

yields between the PG version and the standard OS version as a result of how soil input data are handled. The benchmark

simulations showed substantial speedup as a result of using NetCDF-based input compared to text-based input. Comparing

execution time across a numbers of compute cores indicated potential for efficient parallel scaling. Relevant future work should

18

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

include validation of simulations with other crops and simulation configurations. Given the expected use of the framework in

high-performance computing contexts, a more comprehensive evaluation of computational efficiency and parallel scalability

with different compilers, hardware, and file systems is warranted.

Code availability. All source code for the parallel gridded version of DSSAT-CSM documented in this manuscript is available at DOI:

10.5281/zenodo.4893438 under the 3-Clause BSD License. The current version of source code is available on the gridded branch of a5

fork from the official DSSAT-CSM repository (https://github.com/palderman/dssat-csm-os). Source code for the wrapper functions used to

parallelize the standard text-based version of DSSAT-CSM is available at https://github.com/palderman/GridDSSAT.

Appendix A: Example program using the csm_io module

program csm_io_example

10

use csm_io

implicit none

real real_var15

integer int_var

character(len=5) char_var

real_var = 1.

int_var = 220

char_var = "three"

! Create new section *TEST

call csminp%add_sec(’*TEST’)

25

! Add new variables to section *TEST

call csminp%add_var(’*TEST’,&

real_name=(/’real_var’/),&

int_name=(/’int_var’/),&

char_name=(/’char_var’/))30

19

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

! Store the current values for real_var, int_var, and char_var

call csminp%put(’*TEST’,’real_var’,real_var)

call csminp%put(’*TEST’,’int_var’,int_var)

call csminp%put(’*TEST’,’char_var’,char_var)

5

! Retrieve the previously stored values for real_var, int_var, and char_var

call csminp%get(’*TEST’,’real_var’,real_var)

call csminp%get(’*TEST’,’int_var’,int_var)

call csminp%get(’*TEST’,’char_var’,char_var)

10

end program

Appendix B: Example program reading Network Common Data Form (NetCDF) input files

program dssat_netcdf_example

use csm_io15

use dssat_cmd_arg

use dssat_mpi

use dssat_netcdf

use ordered_array

20

implicit none

integer i,ntrt,len_arg,nlayers,time_i,field_level

real,dimension(8) :: SLB,SRAD25

real :: latitude,longitude

real :: P1V, PARUE

real,dimension(4) :: TRLFG

30

!**********************

! NetCDF FileX example

!**********************

20

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

! Set FileX name

call nc_filex%set_file_from_cmd_arg("--nc_filex")

! Open FileX5

call nc_filex%open()

! Read field level for treatment 10

call nc_filex%read("FL",10,field_level)

10

! Read coordinates for field level

call nc_filex%read("XCRD", field_level, longitude)

call nc_filex%read("YCRD", field_level, latitude)

! Create section *FIELDS15

call csminp%add_sec("*FIELDS")

! Add coordinate variables to section *FIELDS

call csminp%add_var("*FIELDS", real_name=(/"XCRD","YCRD"/))

20

! Store coordinate variables in csminp

call csminp%put("*FIELDS", "XCRD", longitude)

call csminp%put("*FIELDS", "YCRD", latitude)

!**************************25

! NetCDF soil file example

!**************************

! Set soil file name

call nc_soil%set_file_from_cmd_arg("--nc_soil")30

! Initialize NetCDF soil file

call init_nc_soil()

! Read depth to base of layer at specified coordinates35

21

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

call nc_soil%read("SLB", 1, SLB)

!*****************************

! NetCDF weather file example

!*****************************5

! Set weather file name

call nc_wth%set_file_from_cmd_arg("--nc_wth")

! Open weather file10

call nc_wth%open()

! Set coordinates for weather file

call nc_wth%set_lat_lon(latitude,longitude)

15

! Set start date for weather data as 150th day of 2015

call nc_wth%set_date(2015150)

! Read solar radiation starting with 150th day of 2015

call nc_wth%read("SRAD",nc_wth%z_i,SRAD)20

!**

! NetCDF genotype parameter file example

!**

25

! Set genotype parameter file name

call nc_gen%set_file_from_cmd_arg("--nc_gen")

! Open genotype parameter file

call nc_gen%open()30

! Set cultivar and ecotype indices to IB0488 (number for wheat cultivar Newton)

call nc_gen%set_cul_eco("IB0488")

! Read cultivar parameter P1V (vernalization sensitivity)35

22

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

call nc_gen%read_cul("P1V",P1V)

! Read ecotype parameter PARUE (Photosynthetically Active Radiation Use Efficiency)

call nc_gen%read_eco("PARUE",PARUE)

5

! Read species parameter vector TRLFG (cardinal temperatures for leaf growth)

call nc_gen%read_spe("TRLFG",TRLFG)

end program

Appendix C: Example program for parent process that spawns DSSAT-CSM child processes10

program dssat_mpi_parent_example

use mpi

use dssat_mpi

use dssat_cmd_arg15

use dssat_netcdf

use ordered_array

implicit none

20

integer i,ntrt,len_arg

! Variables for MPI_Spawn_Multiple

integer n_dssat,trt_start,trt_end,sim,nseasons

character(len=1) :: rnmode25

character(len=2) :: crop_code

character(len=3) :: rank_buff

character(len=25):: cmd

character(len=1) :: dssat_args

character(len=120) :: out_file_name30

character(len=120) :: work_dir

real,dimension(9) :: xcrd,ycrd

23

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

integer,dimension(9) :: xcrd_i,ycrd_i

type(real_ordered_array) :: latitude,longitude

type(nf90_file) nf90_output

5

mpi_parent%varlist = "rvar,ivar"

out_file_name = "output.nc"

! Initialize MPI connection10

call mpi_parent%init()

!***

! Set control variables and spawn DSSAT-CSM child processes

!***15

n_dssat = 2 ! Number of DSSAT-CSM children to spawn

trt_start = 1 ! Beginning of range for treatment levels to simulate

trt_end = 9 ! End of range for treatment levels to simulate

rnmode = "B" ! DSSAT-CSM run mode20

crop_code = "WH" ! DSSAT-CSM crop code

dssat_args = " " ! Additional arguments passed to DSSAT-CSM

work_dir = "." ! Working directory

! Name of executable for DSSAT-CSM child process25

cmd = "./dssat_mpi_child_example"

! Spawn DSSAT-CSM child processes

call mpi_parent%spawn_dssat_children(n_dssat,trt_start,trt_end,rnmode,&

crop_code,cmd,dssat_args,work_dir)30

!**

! Set up NetCDF output file for simulated output

!**

35

24

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

nseasons = 10 ! Number of seasons to store simulated output

! Longitude values for output file

xcrd = (/-97.06, -97.06, -97.06,&

-97.07, -97.07, -97.07,&5

-97.08, -97.08, -97.08/)

! Latitude values for output file

ycrd = (/36.11, 36.12, 36.13,&

36.11, 36.12, 36.13,&10

36.11, 36.12, 36.13/)

! Insert coordinate variables into ordered array

do i=1,size(xcrd)

call longitude%insert(xcrd(i))15

call latitude%insert(ycrd(i))

end do

! Set corresponding ordered array index value for coordinates

do i=1,size(xcrd)20

xcrd_i(i) = longitude%find(xcrd(i))

ycrd_i(i) = latitude%find(ycrd(i))

end do

! Create NetCDF output file25

call nf90_output%create(out_file_name,overwrite=.TRUE.)

! Add coordinate and season dimensions

call nf90_output%add_dim("lat",latitude%curr_end)

call nf90_output%add_dim("lon",longitude%curr_end)30

call nf90_output%add_dim("season",nseasons)

! Add coordinate and season variables

call nf90_output%add_var("lat",(/"lat"/),nf90_float)

call nf90_output%add_var("lon",(/"lon"/),nf90_float)35

25

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

call nf90_output%add_var("season",(/"season"/),nf90_int)

! Write values for coordinate and season variables

call nf90_output%write_variable("lat",(/1/),(/latitude%curr_end/),&

latitude%values)5

call nf90_output%write_variable("lon",(/1/),(/longitude%curr_end/),&

longitude%values)

call nf90_output%write_variable("season",(/1/),(/nseasons/),&

(/(i,i=1,nseasons)/))

10

!**

! Write simulated data to NetCDF output file

!**

! Receive simulated data from DSSAT-CSM child processes15

call mpi_parent%receive_registries()

! Close MPI connection

call mpi_parent%close()

20

! Clean up DSSAT-CSM child process running directories (*nix OS specific)

do i=1,n_dssat

write(rank_buff,"(i3)") i-1

call system("rm -r "//trim(adjustl(work_dir))//&

"/dssat_"//trim(adjustl(rank_buff)))25

end do

! Write simulated data to NetCDF output file

call nf90_output%write_netcdf(mpi_parent,nseasons,xcrd_i,ycrd_i)

30

! Close NetCDF output file

call nf90_output%close()

end program dssat_mpi_parent_example

26

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Appendix D: Example program that mimics a DSSAT-CSM child process

program dssat_mpi_child_example

use dssat_mpi

5

implicit none

integer i,season

real rvar10

integer ivar

! Open MPI connection with parent process

call mpi_child%connect()

15

! Set up seasonal registry with variable list from parent process

call seasonal_registry%csv_to_registry(mpi_child%varlist)

! Set address targets for rvar and ivar in seasonal_registry

call seasonal_registry%set_target("rvar",rvar)20

call seasonal_registry%set_target("ivar",ivar)

! Mimic DSSAT-CSM simulations by calculating and storing values

! for rvar and ivar at each iteration

do i=1,size(mpi_child%trtno)25

do season=1,10

rvar = mpi_child%trtno(i)*100. + season*10.

ivar = mpi_child%trtno(i)*100 + season

call seasonal_registry%store()

end do30

end do

! Send registry to parent process through MPI

call mpi_child%send_registry(seasonal_registry)

27

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

! Close down MPI connection with parent process

call mpi_child%close()

end program5

Appendix E: Header of Network Common Data Form (NetCDF) FileX

netcdf filex {

dimensions:

SIMULATION\ CONTROLS = 20 ;

len1 = 1 ;10

FIELDS = 7208 ;

CULTIVARS = 1 ;

len6 = 6 ;

len2 = 2 ;

TREATMENTS = 144160 ;15

PLANTING\ DETAILS = 20 ;

FERTILIZERS = 20 ;

len5 = 5 ;

len0 = 2 ;

len3 = 3 ;20

len7 = 7 ;

HARVEST\ DETAILS = 1 ;

len8 = 8 ;

len10 = 10 ;

len17 = 17 ;25

variables:

char SUMRY(SIMULATION\ CONTROLS, len1) ;

SUMRY:_FillValue = " " ;

char MESOL(SIMULATION\ CONTROLS, len1) ;

MESOL:_FillValue = " " ;30

float AREA(FIELDS) ;

AREA:_FillValue = -99.f ;

char CAOUT(SIMULATION\ CONTROLS, len1) ;

28

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

CAOUT:_FillValue = " " ;

char CHEM(SIMULATION\ CONTROLS, len1) ;

CHEM:_FillValue = " " ;

char CHOUT(SIMULATION\ CONTROLS, len1) ;

CHOUT:_FillValue = " " ;5

char CNAME(CULTIVARS, len6) ;

CNAME:_FillValue = " " ;

char CO2(SIMULATION\ CONTROLS, len1) ;

CO2:_FillValue = " " ;

char CR(CULTIVARS, len2) ;10

CR:_FillValue = " " ;

int CU(TREATMENTS) ;

CU:_FillValue = -99 ;

int CULTIVARS(CULTIVARS) ;

CULTIVARS:units = "count" ;15

CULTIVARS:long_name = "CULTIVARS" ;

char DIOUT(SIMULATION\ CONTROLS, len1) ;

DIOUT:_FillValue = " " ;

char DISES(SIMULATION\ CONTROLS, len1) ;

DISES:_FillValue = " " ;20

int EDATE(PLANTING\ DETAILS) ;

EDATE:_FillValue = -99 ;

float ELEV(FIELDS) ;

ELEV:_FillValue = -99.f ;

char EVAPO(SIMULATION\ CONTROLS, len1) ;25

EVAPO:_FillValue = " " ;

char FACD(FERTILIZERS, len5) ;

FACD:_FillValue = " " ;

float FAMC(FERTILIZERS) ;

FAMC:_FillValue = -99.f ;30

float FAMK(FERTILIZERS) ;

FAMK:_FillValue = -99.f ;

float FAMN(FERTILIZERS) ;

FAMN:_FillValue = -99.f ;

float FAMO(FERTILIZERS) ;35

29

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

FAMO:_FillValue = -99.f ;

float FAMP(FERTILIZERS) ;

FAMP:_FillValue = -99.f ;

int FDATE(FERTILIZERS) ;

FDATE:_FillValue = -99 ;5

float FDEP(FERTILIZERS) ;

FDEP:_FillValue = -99.f ;

char FERNAME(FERTILIZERS, len0) ;

FERNAME:_FillValue = " " ;

char FERTI(SIMULATION\ CONTROLS, len1) ;10

FERTI:_FillValue = " " ;

int FERTILIZERS(FERTILIZERS) ;

FERTILIZERS:units = "count" ;

FERTILIZERS:long_name = "FERTILIZERS" ;

float FHDUR(FIELDS) ;15

FHDUR:_FillValue = -99.f ;

int FIELDS(FIELDS) ;

FIELDS:units = "count" ;

FIELDS:long_name = "FIELDS" ;

int FL(TREATMENTS) ;20

FL:_FillValue = -99 ;

float FLDD(FIELDS) ;

FLDD:_FillValue = -99.f ;

float FLDS(FIELDS) ;

FLDS:_FillValue = -99.f ;25

char FLDT(FIELDS, len3) ;

FLDT:_FillValue = " " ;

char FLHST(FIELDS, len3) ;

FLHST:_FillValue = " " ;

char FLNAME(FIELDS, len7) ;30

FLNAME:_FillValue = " " ;

float FLOB(FIELDS) ;

FLOB:_FillValue = -99.f ;

float FLSA(FIELDS) ;

FLSA:_FillValue = -99.f ;35

30

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

char FLST(FIELDS, len3) ;

FLST:_FillValue = " " ;

float FLWR(FIELDS) ;

FLWR:_FillValue = -99.f ;

char FMCD(FERTILIZERS, len5) ;5

FMCD:_FillValue = " " ;

char FNAME(SIMULATION\ CONTROLS, len1) ;

FNAME:_FillValue = " " ;

char FOCD(FERTILIZERS, len0) ;

FOCD:_FillValue = " " ;10

int FROPT(SIMULATION\ CONTROLS) ;

FROPT:_FillValue = -99 ;

char GROUT(SIMULATION\ CONTROLS, len1) ;

GROUT:_FillValue = " " ;

int HARVEST\ DETAILS(HARVEST\ DETAILS) ;15

HARVEST\ DETAILS:units = "count" ;

HARVEST\ DETAILS:long_name = "HARVEST DETAILS" ;

char HARVS(SIMULATION\ CONTROLS, len1) ;

HARVS:_FillValue = " " ;

float HBPC(HARVEST\ DETAILS) ;20

HBPC:_FillValue = -99.f ;

float HCOM(HARVEST\ DETAILS) ;

HCOM:_FillValue = -99.f ;

float HDATE(HARVEST\ DETAILS) ;

HDATE:_FillValue = -99.f ;25

int HFRST(SIMULATION\ CONTROLS) ;

HFRST:_FillValue = -99 ;

int HLAST(SIMULATION\ CONTROLS) ;

HLAST:_FillValue = -99 ;

char HNAME(HARVEST\ DETAILS, len5) ;30

HNAME:_FillValue = " " ;

float HPC(HARVEST\ DETAILS) ;

HPC:_FillValue = -99.f ;

float HPCNP(SIMULATION\ CONTROLS) ;

HPCNP:_FillValue = -99.f ;35

31

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

float HPCNR(SIMULATION\ CONTROLS) ;

HPCNR:_FillValue = -99.f ;

float HSIZE(HARVEST\ DETAILS) ;

HSIZE:_FillValue = -99.f ;

char HSTG(HARVEST\ DETAILS, len5) ;5

HSTG:_FillValue = " " ;

char HYDRO(SIMULATION\ CONTROLS, len1) ;

HYDRO:_FillValue = " " ;

int IC(TREATMENTS) ;

IC:_FillValue = -99 ;10

char ID_FIELD(FIELDS, len8) ;

ID_FIELD:_FillValue = " " ;

char ID_SOIL(FIELDS, len10) ;

ID_SOIL:_FillValue = " " ;

float IMDEP(SIMULATION\ CONTROLS) ;15

IMDEP:_FillValue = -99.f ;

char IMETH(SIMULATION\ CONTROLS, len5) ;

IMETH:_FillValue = " " ;

char INCON(SIMULATION\ CONTROLS, len1) ;

INCON:_FillValue = " " ;20

char INFIL(SIMULATION\ CONTROLS, len1) ;

INFIL:_FillValue = " " ;

char INGENO(CULTIVARS, len6) ;

INGENO:_FillValue = " " ;

float IRAMT(SIMULATION\ CONTROLS) ;25

IRAMT:_FillValue = -99.f ;

float IREFF(SIMULATION\ CONTROLS) ;

IREFF:_FillValue = -99.f ;

char IROFF(SIMULATION\ CONTROLS, len5) ;

IROFF:_FillValue = " " ;30

char IRRIG(SIMULATION\ CONTROLS, len1) ;

IRRIG:_FillValue = " " ;

float ITHRL(SIMULATION\ CONTROLS) ;

ITHRL:_FillValue = -99.f ;

float ITHRU(SIMULATION\ CONTROLS) ;35

32

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

ITHRU:_FillValue = -99.f ;

char LIGHT(SIMULATION\ CONTROLS, len1) ;

LIGHT:_FillValue = " " ;

float LNFER(FERTILIZERS) ;

LNFER:_FillValue = -99.f ;5

float LNHAR(HARVEST\ DETAILS) ;

LNHAR:_FillValue = -99.f ;

char LONG(SIMULATION\ CONTROLS, len1) ;

LONG:_FillValue = " " ;

int MC(TREATMENTS) ;10

MC:_FillValue = -99 ;

int ME(TREATMENTS) ;

ME:_FillValue = -99 ;

char MESEV(SIMULATION\ CONTROLS, len1) ;

MESEV:_FillValue = " " ;15

char MESOM(SIMULATION\ CONTROLS, len1) ;

MESOM:_FillValue = " " ;

int MF(TREATMENTS) ;

MF:_FillValue = -99 ;

int MH(TREATMENTS) ;20

MH:_FillValue = -99 ;

int MI(TREATMENTS) ;

MI:_FillValue = -99 ;

char MIOUT(SIMULATION\ CONTROLS, len1) ;

MIOUT:_FillValue = " " ;25

int MP(TREATMENTS) ;

MP:_FillValue = -99 ;

int MR(TREATMENTS) ;

MR:_FillValue = -99 ;

int MT(TREATMENTS) ;30

MT:_FillValue = -99 ;

float NAMNT(SIMULATION\ CONTROLS) ;

NAMNT:_FillValue = -99.f ;

char NAOFF(SIMULATION\ CONTROLS, len5) ;

NAOFF:_FillValue = " " ;35

33

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

char NCODE(SIMULATION\ CONTROLS, len5) ;

NCODE:_FillValue = " " ;

char NIOUT(SIMULATION\ CONTROLS, len1) ;

NIOUT:_FillValue = " " ;

char NITRO(SIMULATION\ CONTROLS, len1) ;5

NITRO:_FillValue = " " ;

float NMDEP(SIMULATION\ CONTROLS) ;

NMDEP:_FillValue = -99.f ;

float NMTHR(SIMULATION\ CONTROLS) ;

NMTHR:_FillValue = -99.f ;10

int NREPS(SIMULATION\ CONTROLS) ;

NREPS:_FillValue = -99 ;

int NSWIT(SIMULATION\ CONTROLS) ;

NSWIT:_FillValue = -99 ;

int NYERS(SIMULATION\ CONTROLS) ;15

NYERS:_FillValue = -99 ;

char OPOUT(SIMULATION\ CONTROLS, len1) ;

OPOUT:_FillValue = " " ;

char OVVEW(SIMULATION\ CONTROLS, len1) ;

OVVEW:_FillValue = " " ;20

float PAGE(PLANTING\ DETAILS) ;

PAGE:_FillValue = -99.f ;

int PDATE(PLANTING\ DETAILS) ;

PDATE:_FillValue = -99 ;

float PENV(PLANTING\ DETAILS) ;25

PENV:_FillValue = -99.f ;

int PFRST(SIMULATION\ CONTROLS) ;

PFRST:_FillValue = -99 ;

float PH2OD(SIMULATION\ CONTROLS) ;

PH2OD:_FillValue = -99.f ;30

float PH2OL(SIMULATION\ CONTROLS) ;

PH2OL:_FillValue = -99.f ;

float PH2OU(SIMULATION\ CONTROLS) ;

PH2OU:_FillValue = -99.f ;

char PHOSP(SIMULATION\ CONTROLS, len1) ;35

34

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

PHOSP:_FillValue = " " ;

char PHOTO(SIMULATION\ CONTROLS, len1) ;

PHOTO:_FillValue = " " ;

char PLANT(SIMULATION\ CONTROLS, len1) ;

PLANT:_FillValue = " " ;5

int PLANTING\ DETAILS(PLANTING\ DETAILS) ;

PLANTING\ DETAILS:units = "count" ;

PLANTING\ DETAILS:long_name = "PLANTING DETAILS" ;

int PLAST(SIMULATION\ CONTROLS) ;

PLAST:_FillValue = -99 ;10

float PLDP(PLANTING\ DETAILS) ;

PLDP:_FillValue = -99.f ;

char PLDS(PLANTING\ DETAILS, len1) ;

PLDS:_FillValue = " " ;

char PLME(PLANTING\ DETAILS, len1) ;15

PLME:_FillValue = " " ;

char PLNAME(PLANTING\ DETAILS, len0) ;

PLNAME:_FillValue = " " ;

float PLPH(PLANTING\ DETAILS) ;

PLPH:_FillValue = -99.f ;20

float PLRD(PLANTING\ DETAILS) ;

PLRD:_FillValue = -99.f ;

float PLRS(PLANTING\ DETAILS) ;

PLRS:_FillValue = -99.f ;

float PLWT(PLANTING\ DETAILS) ;25

PLWT:_FillValue = -99.f ;

char POTAS(SIMULATION\ CONTROLS, len1) ;

POTAS:_FillValue = " " ;

float PPOE(PLANTING\ DETAILS) ;

PPOE:_FillValue = -99.f ;30

float PPOP(PLANTING\ DETAILS) ;

PPOP:_FillValue = -99.f ;

float PSTMN(SIMULATION\ CONTROLS) ;

PSTMN:_FillValue = -99.f ;

float PSTMX(SIMULATION\ CONTROLS) ;35

35

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

PSTMX:_FillValue = -99.f ;

char RESID(SIMULATION\ CONTROLS, len1) ;

RESID:_FillValue = " " ;

float RIDEP(SIMULATION\ CONTROLS) ;

RIDEP:_FillValue = -99.f ;5

float RIPCN(SIMULATION\ CONTROLS) ;

RIPCN:_FillValue = -99.f ;

int RSEED(SIMULATION\ CONTROLS) ;

RSEED:_FillValue = -99 ;

int RTIME(SIMULATION\ CONTROLS) ;10

RTIME:_FillValue = -99 ;

int SA(TREATMENTS) ;

SA:_FillValue = -99 ;

int SDATE(SIMULATION\ CONTROLS) ;

SDATE:_FillValue = -99 ;15

int SIMULATION\ CONTROLS(SIMULATION\ CONTROLS) ;

SIMULATION\ CONTROLS:units = "count" ;

SIMULATION\ CONTROLS:long_name = "SIMULATION CONTROLS" ;

float SLAS(FIELDS) ;

SLAS:_FillValue = -99.f ;20

float SLDP(FIELDS) ;

SLDP:_FillValue = -99.f ;

float SLEN(FIELDS) ;

SLEN:_FillValue = -99.f ;

char SLTX(FIELDS, len2) ;25

SLTX:_FillValue = " " ;

int SM(TREATMENTS) ;

SM:_FillValue = -99 ;

char SMODEL(SIMULATION\ CONTROLS, len0) ;

SMODEL:_FillValue = " " ;30

char SNAME(SIMULATION\ CONTROLS, len17) ;

SNAME:_FillValue = " " ;

float SPRL(PLANTING\ DETAILS) ;

SPRL:_FillValue = -99.f ;

char START(SIMULATION\ CONTROLS, len1) ;35

36

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

START:_FillValue = " " ;

char SYMBI(SIMULATION\ CONTROLS, len1) ;

SYMBI:_FillValue = " " ;

char TILL(SIMULATION\ CONTROLS, len1) ;

TILL:_FillValue = " " ;5

char TNAME(TREATMENTS, len0) ;

TNAME:_FillValue = " " ;

int TREATMENTS(TREATMENTS) ;

TREATMENTS:units = "count" ;

TREATMENTS:long_name = "TREATMENTS" ;10

char WAOUT(SIMULATION\ CONTROLS, len1) ;

WAOUT:_FillValue = " " ;

char WATER(SIMULATION\ CONTROLS, len1) ;

WATER:_FillValue = " " ;

char WSTA(FIELDS, len8) ;15

WSTA:_FillValue = " " ;

char WTHER(SIMULATION\ CONTROLS, len1) ;

WTHER:_FillValue = " " ;

float XCRD(FIELDS) ;

XCRD:_FillValue = -99.f ;20

float YCRD(FIELDS) ;

YCRD:_FillValue = -99.f ;

int len0(len0) ;

len0:units = "count" ;

len0:long_name = "len0" ;25

int len1(len1) ;

len1:units = "count" ;

len1:long_name = "len1" ;

int len10(len10) ;

len10:units = "count" ;30

len10:long_name = "len10" ;

int len17(len17) ;

len17:units = "count" ;

len17:long_name = "len17" ;

int len2(len2) ;35

37

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

len2:units = "count" ;

len2:long_name = "len2" ;

int len3(len3) ;

len3:units = "count" ;

len3:long_name = "len3" ;5

int len5(len5) ;

len5:units = "count" ;

len5:long_name = "len5" ;

int len6(len6) ;

len6:units = "count" ;10

len6:long_name = "len6" ;

int len7(len7) ;

len7:units = "count" ;

len7:long_name = "len7" ;

int len8(len8) ;15

len8:units = "count" ;

len8:long_name = "len8" ;

}

Appendix F: Header of Network Common Data Form (NetCDF) soil input file20

netcdf soil {

dimensions:

latitude = 67 ;

longitude = 171 ;

layer = UNLIMITED ; // (6 currently)25

variables:

float latitude(latitude) ;

latitude:units = "degrees_north" ;

latitude:long_name = "latitude" ;

float longitude(longitude) ;30

longitude:units = "degrees_east" ;

longitude:long_name = "longitude" ;

int layer(layer) ;

38

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

layer:units = "unknown" ;

layer:long_name = "layer" ;

float SLB(layer, latitude, longitude) ;

SLB:_FillValue = -99.f ;

SLB:missing_value = -99.f ;5

SLB:long_name = "SLB" ;

float SALB(latitude, longitude) ;

SALB:_FillValue = -99.f ;

SALB:missing_value = -99.f ;

SALB:long_name = "SALB" ;10

float slope_r(latitude, longitude) ;

slope_r:_FillValue = -99.f ;

slope_r:missing_value = -99.f ;

slope_r:long_name = "slope_r" ;

float SLDR(latitude, longitude) ;15

SLDR:_FillValue = -99.f ;

SLDR:missing_value = -99.f ;

SLDR:long_name = "SLDR" ;

float SLLL(layer, latitude, longitude) ;

SLLL:_FillValue = -99.f ;20

SLLL:missing_value = -99.f ;

SLLL:long_name = "SLLL" ;

float SDUL(layer, latitude, longitude) ;

SDUL:_FillValue = -99.f ;

SDUL:missing_value = -99.f ;25

SDUL:long_name = "SDUL" ;

float SSAT(layer, latitude, longitude) ;

SSAT:_FillValue = -99.f ;

SSAT:missing_value = -99.f ;

SSAT:long_name = "SSAT" ;30

float SSKS(layer, latitude, longitude) ;

SSKS:_FillValue = -99.f ;

SSKS:missing_value = -99.f ;

SSKS:long_name = "SSKS" ;

float SBDM(layer, latitude, longitude) ;35

39

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

SBDM:_FillValue = -99.f ;

SBDM:missing_value = -99.f ;

SBDM:long_name = "SBDM" ;

float SLOC(layer, latitude, longitude) ;

SLOC:_FillValue = -99.f ;5

SLOC:missing_value = -99.f ;

SLOC:long_name = "SLOC" ;

float SLCL(layer, latitude, longitude) ;

SLCL:_FillValue = -99.f ;

SLCL:missing_value = -99.f ;10

SLCL:long_name = "SLCL" ;

float SLSI(layer, latitude, longitude) ;

SLSI:_FillValue = -99.f ;

SLSI:missing_value = -99.f ;

SLSI:long_name = "SLSI" ;15

float SLCF(layer, latitude, longitude) ;

SLCF:_FillValue = -99.f ;

SLCF:missing_value = -99.f ;

SLCF:long_name = "SLCF" ;

float SRGF(layer, latitude, longitude) ;20

SRGF:_FillValue = -99.f ;

SRGF:missing_value = -99.f ;

SRGF:long_name = "SRGF" ;

float SLRO(latitude, longitude) ;

SLRO:_FillValue = -99.f ;25

SLRO:missing_value = -99.f ;

SLRO:long_name = "SLRO" ;

float SLU1(latitude, longitude) ;

SLU1:_FillValue = -99.f ;

SLU1:grid_mapping = "crs" ;30

SLU1:proj4 = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;

int crs ;

crs:proj4 = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;

// global attributes:35

40

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

:crs = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;

:crs_format = "PROJ.4" ;

:Conventions = "CF-1.4" ;

}

Appendix G: Header of Network Common Data Form (NetCDF) weather input file5

netcdf weather {

dimensions:

longitude = 171 ;

latitude = UNLIMITED ; // (67 currently)

DATE = 7670 ;10

variables:

float longitude(longitude) ;

float latitude(latitude) ;

float TAMP(latitude, longitude) ;

TAMP:units = "degree C" ;15

TAMP:_FillValue = -3.4e+38f ;

TAMP:missing_value = -3.4e+38f ;

TAMP:long_name = "TAMP" ;

float TAV(latitude, longitude) ;

TAV:units = "degree C" ;20

TAV:_FillValue = -3.4e+38f ;

TAV:missing_value = -3.4e+38f ;

TAV:long_name = "TAV" ;

float ELEV(latitude, longitude) ;

ELEV:units = "meters" ;25

ELEV:_FillValue = -3.4e+38f ;

ELEV:missing_value = -3.4e+38f ;

ELEV:long_name = "ELEV" ;

float REFHT(latitude, longitude) ;

REFHT:units = "meters" ;30

REFHT:_FillValue = -3.4e+38f ;

REFHT:missing_value = -3.4e+38f ;

REFHT:long_name = "REFHT" ;

41

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

float WINDHT(latitude, longitude) ;

WINDHT:units = "meters" ;

WINDHT:_FillValue = -3.4e+38f ;

WINDHT:missing_value = -3.4e+38f ;

WINDHT:long_name = "WINDHT" ;5

int DATE(DATE) ;

float RHUM(latitude, longitude, DATE) ;

RHUM:units = "percent" ;

RHUM:_FillValue = -3.4e+38f ;

RHUM:missing_value = -3.4e+38f ;10

RHUM:long_name = "RELH" ;

float WIND(latitude, longitude, DATE) ;

WIND:units = "km per day" ;

WIND:_FillValue = -3.4e+38f ;

WIND:missing_value = -3.4e+38f ;15

WIND:long_name = "WS2M" ;

float RAIN(latitude, longitude, DATE) ;

RAIN:units = "mm" ;

RAIN:_FillValue = -3.4e+38f ;

RAIN:missing_value = -3.4e+38f ;20

RAIN:long_name = "RAIN" ;

float TMIN(latitude, longitude, DATE) ;

TMIN:units = "degrees C" ;

TMIN:_FillValue = -3.4e+38f ;

TMIN:missing_value = -3.4e+38f ;25

TMIN:long_name = "TMIN" ;

float TMAX(latitude, longitude, DATE) ;

TMAX:units = "degrees C" ;

TMAX:_FillValue = -3.4e+38f ;

TMAX:missing_value = -3.4e+38f ;30

TMAX:long_name = "TMAX" ;

float SRAD(latitude, longitude, DATE) ;

SRAD:units = "MJ" ;

SRAD:_FillValue = -3.4e+38f ;

SRAD:missing_value = -3.4e+38f ;35

42

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

SRAD:long_name = "SRAD" ;

// global attributes:

:crs = "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0" ;

:crs_format = "PROJ.4" ;5

:Conventions = "CF-1.4" ;

}

Appendix H: Header of Network Common Data Form (NetCDF) genotype specific parameter input file

netcdf genetic_parameters {

dimensions:10

l1 = 1 ;

l6 = 6 ;

l3 = 3 ;

l10 = 10 ;

l4 = 4 ;15

l8 = 8 ;

l11 = 11 ;

l18 = 18 ;

l12 = 12 ;

variables:20

int ECO999991 ;

ECO999991:_FillValue = -99 ;

int ECO999992 ;

ECO999992:_FillValue = -99 ;

int ECODFAULT ;25

ECODFAULT:_FillValue = -99 ;

int ECOCAWH01 ;

ECOCAWH01:_FillValue = -99 ;

int ECOUSWH01 ;

ECOUSWH01:_FillValue = -99 ;30

int ECOUKWH01 ;

ECOUKWH01:_FillValue = -99 ;

int ECOAZWH18 ;

43

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

ECOAZWH18:_FillValue = -99 ;

int ECOCI0001 ;

ECOCI0001:_FillValue = -99 ;

int ECOASA001 ;

ECOASA001:_FillValue = -99 ;5

int ECOG2P001 ;

ECOG2P001:_FillValue = -99 ;

int ECOG2P002 ;

ECOG2P002:_FillValue = -99 ;

int CUL999991 ;10

CUL999991:_FillValue = -99 ;

int CUL999992 ;

CUL999992:_FillValue = -99 ;

int CULDFAULT ;

CULDFAULT:_FillValue = -99 ;15

int CULIB1500 ;

CULIB1500:_FillValue = -99 ;

int CULIB0488 ;

CULIB0488:_FillValue = -99 ;

int CULIB1015 ;20

CULIB1015:_FillValue = -99 ;

int CULROTS01 ;

CULROTS01:_FillValue = -99 ;

int CULAW0071 ;

CULAW0071:_FillValue = -99 ;25

int CULCI0001 ;

CULCI0001:_FillValue = -99 ;

int CULASA001 ;

CULASA001:_FillValue = -99 ;

int CULG2P001 ;30

CULG2P001:_FillValue = -99 ;

int CULG2P002 ;

CULG2P002:_FillValue = -99 ;

int l1(l1) ;

l1:units = "count" ;35

44

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

l1:long_name = "l1" ;

float PGERM(l1) ;

PGERM:_FillValue = -99.f ;

float PEMRG(l1) ;

PEMRG:_FillValue = -99.f ;5

float P0(l1) ;

P0:_FillValue = -99.f ;

float P6(l1) ;

P6:_FillValue = -99.f ;

float PPFPE(l1) ;10

PPFPE:_FillValue = -99.f ;

float PPTHR(l1) ;

PPTHR:_FillValue = -99.f ;

float PPEND(l1) ;

PPEND:_FillValue = -99.f ;15

float RLIG%(l1) ;

RLIG%:_FillValue = -99.f ;

float RLWR(l1) ;

RLWR:_FillValue = -99.f ;

float RSEN(l1) ;20

RSEN:_FillValue = -99.f ;

float RRESP(l1) ;

RRESP:_FillValue = -99.f ;

float RLDGR(l1) ;

RLDGR:_FillValue = -99.f ;25

float LLIG%(l1) ;

LLIG%:_FillValue = -99.f ;

float LAXS(l1) ;

LAXS:_FillValue = -99.f ;

float LSHFR(l1) ;30

LSHFR:_FillValue = -99.f ;

float LSHAW(l1) ;

LSHAW:_FillValue = -99.f ;

float PHL1(l1) ;

PHL1:_FillValue = -99.f ;35

45

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

float PHF1(l1) ;

PHF1:_FillValue = -99.f ;

float SLAMN(l1) ;

SLAMN:_FillValue = -99.f ;

float SLACF(l1) ;5

SLACF:_FillValue = -99.f ;

float LLIFE(l1) ;

LLIFE:_FillValue = -99.f ;

float LWLOS(l1) ;

LWLOS:_FillValue = -99.f ;10

float LRPHS(l1) ;

LRPHS:_FillValue = -99.f ;

int l6(l6) ;

l6:units = "count" ;

l6:long_name = "l6" ;15

float LASF(l6) ;

LASF:_FillValue = -99.f ;

int l3(l3) ;

l3:units = "count" ;

l3:long_name = "l3" ;20

float CHT%(l3) ;

CHT%:_FillValue = -99.f ;

float CLA%(l3) ;

CLA%:_FillValue = -99.f ;

float TPAR(l1) ;25

TPAR:_FillValue = -99.f ;

float TSRAD(l1) ;

TSRAD:_FillValue = -99.f ;

float TGR02(l1) ;

TGR02:_FillValue = -99.f ;30

float RS%X(l1) ;

RS%X:_FillValue = -99.f ;

float RSUSE(l1) ;

RSUSE:_FillValue = -99.f ;

float SLIG%(l1) ;35

46

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

SLIG%:_FillValue = -99.f ;

float SAWS(l1) ;

SAWS:_FillValue = -99.f ;

float SGPHE(l1) ;

SGPHE:_FillValue = -99.f ;5

float SSPHS(l1) ;

SSPHS:_FillValue = -99.f ;

float SSEN%(l1) ;

SSEN%:_FillValue = -99.f ;

float CHFR(l1) ;10

CHFR:_FillValue = -99.f ;

float CHSTG(l1) ;

CHSTG:_FillValue = -99.f ;

float GLIG%(l1) ;

GLIG%:_FillValue = -99.f ;15

float SDWT(l1) ;

SDWT:_FillValue = -99.f ;

float SDAFR(l1) ;

SDAFR:_FillValue = -99.f ;

int l10(l10) ;20

l10:units = "count" ;

l10:long_name = "l10" ;

float CO2RF(l10) ;

CO2RF:_FillValue = -99.f ;

float CO2F(l10) ;25

CO2F:_FillValue = -99.f ;

float PTFMX(l1) ;

PTFMX:_FillValue = -99.f ;

float PTFS(l6) ;

PTFS:_FillValue = -99.f ;30

float PTFA(l6) ;

PTFA:_FillValue = -99.f ;

float STFR(l6) ;

STFR:_FillValue = -99.f ;

float TKUH(l1) ;35

47

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

TKUH:_FillValue = -99.f ;

float HDUR(l1) ;

HDUR:_FillValue = -99.f ;

float TKLF(l1) ;

TKLF:_FillValue = -99.f ;5

int l4(l4) ;

l4:units = "count" ;

l4:long_name = "l4" ;

float TRGEM(l4) ;

TRGEM:_FillValue = -99.f ;10

float TRDV1(l4) ;

TRDV1:_FillValue = -99.f ;

float TRDV2(l4) ;

TRDV2:_FillValue = -99.f ;

float TRLFG(l4) ;15

TRLFG:_FillValue = -99.f ;

float TRPHS(l4) ;

TRPHS:_FillValue = -99.f ;

float TRVRN(l4) ;

TRVRN:_FillValue = -99.f ;20

float TRHAR(l4) ;

TRHAR:_FillValue = -99.f ;

float TRGFW(l4) ;

TRGFW:_FillValue = -99.f ;

float TRGFN(l4) ;25

TRGFN:_FillValue = -99.f ;

float EORATIO(l1) ;

EORATIO:_FillValue = -99.f ;

float RWUPM(l1) ;

RWUPM:_FillValue = -99.f ;30

float RWUMX(l1) ;

RWUMX:_FillValue = -99.f ;

float WFPU(l1) ;

WFPU:_FillValue = -99.f ;

float WFPGF(l1) ;35

48

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

WFPGF:_FillValue = -99.f ;

float WFGU(l1) ;

WFGU:_FillValue = -99.f ;

float WFTU(l1) ;

WFTU:_FillValue = -99.f ;5

float WFTL(l1) ;

WFTL:_FillValue = -99.f ;

float WFSU(l1) ;

WFSU:_FillValue = -99.f ;

float WFGEU(l1) ;10

WFGEU:_FillValue = -99.f ;

float WFRGU(l1) ;

WFRGU:_FillValue = -99.f ;

float LLOSW(l1) ;

LLOSW:_FillValue = -99.f ;15

float NH4MN(l1) ;

NH4MN:_FillValue = -99.f ;

float NO3MN(l1) ;

NO3MN:_FillValue = -99.f ;

float RTNO3(l1) ;20

RTNO3:_FillValue = -99.f ;

float RTNH4(l1) ;

RTNH4:_FillValue = -99.f ;

float NTUPF(l1) ;

NTUPF:_FillValue = -99.f ;25

float GN%MX(l1) ;

GN%MX:_FillValue = -99.f ;

float SDN%(l1) ;

SDN%:_FillValue = -99.f ;

int l8(l8) ;30

l8:units = "count" ;

l8:long_name = "l8" ;

float LN%S(l8) ;

LN%S:_FillValue = -99.f ;

float SN%S(l8) ;35

49

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

SN%S:_FillValue = -99.f ;

float RN%S(l8) ;

RN%S:_FillValue = -99.f ;

float LN%MN(l8) ;

LN%MN:_FillValue = -99.f ;5

float SN%MN(l8) ;

SN%MN:_FillValue = -99.f ;

float RN%MN(l8) ;

RN%MN:_FillValue = -99.f ;

float NLAB%(l1) ;10

NLAB%:_FillValue = -99.f ;

float NFPU(l1) ;

NFPU:_FillValue = -99.f ;

float NFPL(l1) ;

NFPL:_FillValue = -99.f ;15

float NFGU(l1) ;

NFGU:_FillValue = -99.f ;

float NFGL(l1) ;

NFGL:_FillValue = -99.f ;

float NFTU(l1) ;20

NFTU:_FillValue = -99.f ;

float NFTL(l1) ;

NFTL:_FillValue = -99.f ;

float NFSU(l1) ;

NFSU:_FillValue = -99.f ;25

float NFSF(l1) ;

NFSF:_FillValue = -99.f ;

float NCRG(l1) ;

NCRG:_FillValue = -99.f ;

float LLOSN(l1) ;30

LLOSN:_FillValue = -99.f ;

int l11(l11) ;

l11:units = "count" ;

l11:long_name = "l11" ;

float P1(l11) ;35

50

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

P1:_FillValue = -99.f ;

float P2FR1(l11) ;

P2FR1:_FillValue = -99.f ;

float P2(l11) ;

P2:_FillValue = -99.f ;5

float P3(l11) ;

P3:_FillValue = -99.f ;

float P4FR1(l11) ;

P4FR1:_FillValue = -99.f ;

float P4FR2(l11) ;10

P4FR2:_FillValue = -99.f ;

float P4(l11) ;

P4:_FillValue = -99.f ;

float VEFF(l11) ;

VEFF:_FillValue = -99.f ;15

float PARUE(l11) ;

PARUE:_FillValue = -99.f ;

float PARU2(l11) ;

PARU2:_FillValue = -99.f ;

float PHL2(l11) ;20

PHL2:_FillValue = -99.f ;

float PHF3(l11) ;

PHF3:_FillValue = -99.f ;

float LA1S(l11) ;

LA1S:_FillValue = -99.f ;25

float LAFV(l11) ;

LAFV:_FillValue = -99.f ;

float LAFR(l11) ;

LAFR:_FillValue = -99.f ;

float SLAS(l11) ;30

SLAS:_FillValue = -99.f ;

float LSPHS(l11) ;

LSPHS:_FillValue = -99.f ;

float LSPHE(l11) ;

LSPHE:_FillValue = -99.f ;35

51

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

float TIL\#S(l11) ;

TIL\#S:_FillValue = -99.f ;

float TIPHE(l11) ;

TIPHE:_FillValue = -99.f ;

float TIFAC(l11) ;5

TIFAC:_FillValue = -99.f ;

float TDPHS(l11) ;

TDPHS:_FillValue = -99.f ;

float TDPHE(l11) ;

TDPHE:_FillValue = -99.f ;10

float TDFAC(l11) ;

TDFAC:_FillValue = -99.f ;

float RDGS(l11) ;

RDGS:_FillValue = -99.f ;

float HTSTD(l11) ;15

HTSTD:_FillValue = -99.f ;

float AWNS(l11) ;

AWNS:_FillValue = -99.f ;

float KCAN(l11) ;

KCAN:_FillValue = -99.f ;20

float RS%S(l11) ;

RS%S:_FillValue = -99.f ;

float GN%S(l11) ;

GN%S:_FillValue = -99.f ;

float GN%MN(l11) ;25

GN%MN:_FillValue = -99.f ;

float TKFH(l11) ;

TKFH:_FillValue = -99.f ;

int l18(l18) ;

l18:units = "count" ;30

l18:long_name = "l18" ;

int l12(l12) ;

l12:units = "count" ;

l12:long_name = "l12" ;

char VAR-NAME(l12, l18) ;35

52

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

VAR-NAME:_FillValue = " " ;

char EXP\#(l12, l4) ;

EXP\#:_FillValue = " " ;

char ECONO(l12, l6) ;

ECONO:_FillValue = " " ;5

float P1V(l12) ;

P1V:_FillValue = -99.f ;

float P1D(l12) ;

P1D:_FillValue = -99.f ;

float P5(l12) ;10

P5:_FillValue = -99.f ;

float G1(l12) ;

G1:_FillValue = -99.f ;

float G2(l12) ;

G2:_FillValue = -99.f ;15

float G3(l12) ;

G3:_FillValue = -99.f ;

float PHINT(l12) ;

PHINT:_FillValue = -99.f ;

}20

Author contributions. Phillip D. Alderman performed all tasks described in this article.

Competing interests. The author declares no competing interests.

Acknowledgements. This work was supported in part by the USDA National Institute of Food and Agriculture, Hatch project OKL03023, and

by the National Science Foundation under Grant No. OIA-1301789. The computing for this project was performed at the High Performance

Computing Center at Oklahoma State University (OSU-HPCC) supported in part through the National Science Foundation grant OAC-25

1531128. Technical support was provided by Jesse Schafer (Head of Operations OSU-HPCC).

53

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

References

Alderman, P. D.: DSSAT: A Comprehensive R Interface for the DSSAT Cropping Systems Model, R package version 0.0.2.

Alderman, P. D.: A comprehensive R interface for the DSSAT Cropping Systems Model, Comput. Electron. Agr., 172, 105 325, 2020.

Allred, B., Hovick, T., and Fuhlendorf, S.: okmesonet: Retrieve Oklahoma Mesonet climatological data, https://CRAN.R-project.org/

package=okmesonet, R package version 0.1.5, 2014.5

Brock, F. V., Crawford, K. C., Elliott, R. L., Cuperus, G. W., Stadler, S. J., Johnson, H. L., and Eilts, M. D.: The Oklahoma Mesonet: a

technical overview, Journal of Atmospheric and Oceanic Technology, 12, 5–19, 1995.

DSSAT Foundation: DSSAT Overview, https://dssat.net/about, 2019.

Elliott, J., Kelly, D., Chryssanthacopoulos, J., Glotter, M., Jhunjhnuwala, K., Best, N., Wilde, M., and Foster, I.: The par-

allel system for integrating impact models and sectors (pSIMS), Environmental Modelling & Software, 62, 509 – 516,10

https://doi.org/10.1016/j.envsoft.2014.04.008, http://www.sciencedirect.com/science/article/pii/S1364815214001121, 2014.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and Michaelsen, J.:

The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes, Scientific Data, 2, 1–21,

2015.

Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A.,15

Castain, R. H., Daniel, D. J., Graham, R. L., and Woodall, T. S.: Open MPI: Goals, Concept, and Design of a Next Generation MPI

Implementation, in: Proceedings, 11th European PVM/MPI Users’ Group Meeting, pp. 97–104, Budapest, Hungary, 2004.

GDAL/OGR contributors: GDAL/OGR Geospatial Data Abstraction software Library, Open Source Geospatial Foundation, https://gdal.org,

2020.

Gesch, D. B., Evans, G. A., Oimoen, M. J., and Arundel, S.: The National Elevation Dataset, in: Digital Elevation Model Technologies and20

Applications: The DEM Users Manual 3rd Edition, edited by Maune, D. F. and Nayegandhi, A., chap. 4, pp. 83–110, American Society

for Photogrammetry and Remote Sensing, 2018.

Gräler, B., Pebesma, E., and Heuvelink, G.: Spatio-Temporal Interpolation using gstat, The R Journal, 8, 204–218, https://journal.r-project.

org/archive/2016/RJ-2016-014/index.html, 2016.

Hijmans, R. J.: raster: Geographic Data Analysis and Modeling, https://CRAN.R-project.org/package=raster, R package version 3.3-13,25

2020.

Hoogenboom, G., Porter, C., Shelia, V., Boote, K., Singh, U., White, J., Hunt, L., Ogoshi, R., Lizaso, J., Koo, J., Asseng, S., Singels, A.,

Moreno, L., and Jones, J.: Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7.5, Gainesville, Florida, USA,

https://DSSAT.net, 2019.

Iannone, R.: DiagrammeR: Graph/Network Visualization, https://CRAN.R-project.org/package=DiagrammeR, R package version 1.0.6.1,30

2020.

Jang, W. S., Lee, Y., Neff, J. C., Im, Y., Ha, S., and Doro, L.: Development of an EPIC parallel computing framework to facilitate re-

gional/global gridded crop modeling with multiple scenarios: A case study of the United States, Computers and Electronics in Agri-

culture, 158, 189 – 200, https://doi.org/https://doi.org/10.1016/j.compag.2019.02.004, http://www.sciencedirect.com/science/article/pii/

S0168169918315175, 2019.35

Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L., Wilkens, P. W., Singh, U., Gijsman, A. J., and Ritchie,

J. T.: The DSSAT cropping system model, European Journal of Agronomy, 18, 235–265, 2003.

54

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Kang, S., Wang, D., Nichols, J., Schuchart, J., Kline, K., Wei, Y., Ricciuto, D., Wullschleger, S., Post, W., and Izaurralde, R.:

Development of mpi_EPIC model for global agroecosystem modeling, Computers and Electronics in Agriculture, 111, 48 –

54, https://doi.org/https://doi.org/10.1016/j.compag.2014.12.004, http://www.sciencedirect.com/science/article/pii/S0168169914003147,

2015.

McPherson, R. A., Fiebrich, C. A., Crawford, K. C., Kilby, J. R., Grimsley, D. L., Martinez, J. E., Basara, J. B., Illston, B. G., Morris, D. A.,5

Kloesel, K. A., Melvin, A. D., Shrivastava, H., Wolfinbarger, J. M., Bostic, J. P., Demko, D. B., Elliott, R. L., Stadler, S. J., Carlson, J. D.,

and Sutherland, A. J.: Statewide Monitoring of the Mesoscale Environment: A Technical Update on the Oklahoma Mesonet, Journal of

Atmospheric and Oceanic Technology, 24, 301 – 321, https://doi.org/10.1175/JTECH1976.1, https://journals.ametsoc.org/view/journals/

atot/24/3/jtech1976_1.xml, 2007.

Message Passing Interface Forum: MPI: A Message-Passing Interface Standard Version 3.1, Knoxville, Tennessee, USA, https://www.10

mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf, 2015.

National Agricultural Statistics Service: Cropland Data Layer, United States Department of Agriculture, Washington, DC, https://

nassgeodata.gmu.edu/CropScape, 2017.

Nichols, J., Kang, S., Post, W., Wang, D., Bandaru, V., Manowitz, D., Zhang, X., and Izaurralde, R.: HPC-EPIC for high res-

olution simulations of environmental and sustainability assessment, Computers and Electronics in Agriculture, 79, 112 – 115,15

https://doi.org/10.1016/j.compag.2011.08.012, http://www.sciencedirect.com/science/article/pii/S0168169911002018, 2011.

Pebesma, E. J.: Multivariable geostatistics in S: the gstat package, Computers & Geosciences, 30, 683–691, 2004.

Pierce, D.: ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files, https://CRAN.R-project.org/package=ncdf4, R

package version 1.17, 2019.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https:20

//www.R-project.org/, 2020.

Ritchie, J., Godwin, D., and Singh, U.: Soil and weather inputs for the IBSNAT crop models. International benchmark sites network for

agrotechnology transfer (IBSNAT) project., in: Proceedings of the IBSNAT Symposium: Decision Support System for Agrotechnology

Transfer. Part I. Symposium Proceedings. Las Vegas, NV. October 16-18, 1989., pp. 31–45, Department of Agronomy and Soil Science,

College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI, 1990.25

Robinson, S., Mason-D’Croz, D., Sulser, T., Islam, S., Robertson, R., Zhu, T., Gueneau, A., Pitois, G., and Rosegrant, M. W.: The inter-

national model for policy analysis of agricultural commodities and trade (IMPACT): model description for version 3. IFPRI Discussion

Paper 1483, Tech. rep., Washington, DC, http://ebrary.ifpri.org/cdm/ref/collection/p15738coll2/id/129825, 2015.

Shafer, M. A., Fiebrich, C. A., Arndt, D. S., Fredrickson, S. E., and Hughes, T. W.: Quality assurance procedures in the Oklahoma Mesonet-

work, Journal of Atmospheric and Oceanic Technology, 17, 474–494, 2000.30

Soil Survey Staff: U.S. General Soil Map (STATSGO2), Natural Resources Conservation Service, United States Department of Agriculture,

https://sdmdataaccess.sc.egov.usda.gov, 2017.

The HDF Group: Hierarchical Data Format, version 5, https://www.hdfgroup.org/HDF5/, 1997-2020.

Unidata: Network Common Data Form (NetCDF), Boulder, CO, https://doi.org/10.5065/D6H70CW6, 2017.

United States Census Bureau: TIGER/Line® shapefiles and TIGER/Line® files, https://www.census.gov/geographies/mapping-files/35

time-series/geo/tiger-line-file.html, accessed March 30, 2017, 2016.

55

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

Vital, J.-A., Gaurut, M., Lardy, R., Viovy, N., Soussana, J.-F., Bellocchi, G., and Martin, R.: High-performance computing for

climate change impact studies with the Pasture Simulation model, Computers and Electronics in Agriculture, 98, 131 – 135,

https://doi.org/10.1016/j.compag.2013.08.004, http://www.sciencedirect.com/science/article/pii/S0168169913001725, 2013.

Wickham, H.: ggplot2: Elegant Graphics for Data Analysis, Springer-Verlag New York, https://ggplot2.tidyverse.org, 2016.

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M.,5

Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., Takahashi, K., Vaughan, D., Wilke,

C., Woo, K., and Yutani, H.: Welcome to the tidyverse, Journal of Open Source Software, 4, 1686, https://doi.org/10.21105/joss.01686,

2019.

Yu, H.: Rmpi: Parallel Statistical Computing in R, R News, 2, 10–14, https://cran.r-project.org/doc/Rnews/Rnews_2002-2.pdf, 2002.

Zhao, G., Bryan, B. A., King, D., Luo, Z., Wang, E., Bende-Michl, U., Song, X., and Yu, Q.: Large-scale, high-resolution agricultural systems10

modeling using a hybrid approach combining grid computing and parallel processing, Environmental Modelling & Software, 41, 231 –

238, https://doi.org/10.1016/j.envsoft.2012.08.007, http://www.sciencedirect.com/science/article/pii/S1364815212002277, 2013.

56

https://doi.org/10.5194/gmd-2021-183
Preprint. Discussion started: 15 June 2021
c© Author(s) 2021. CC BY 4.0 License.

